Context-Aware
Pervasive Systems

Architectures for a New Breed of Applications

—549 , SENG LOKE

5 2
»

"1 | f) |
e u bt

Context-Aware
Pervasive Systems

OTHER TELECOMMUNICATIONS BOOKS FROM AUERBACH

Architecting the Telecommunication
Evolution: Toward Converged Network
Services

Vijay K. Gurbani and Xian-He Sun

ISBN: 0-8493-9567-4

Business Strategies for the
Next-Generation Network
Nigel Seel

ISBN: 0-8493-8035-9

Chaos Applications in
Telecommunications
Peter Stavroulakis

ISBN: 0-8493-3832-8

Context-Aware Pervasive Systems:
Architectures for a New Breed of
Applications

Seng Loke

ISBN: 0-8493-7255-0

Fundamentals of DSL Technology
Philip Golden, Herve Dedieu, Krista S Jacobsen
ISBN: 0-8493-1913-7

Introduction to Mobile Communications:
Technology, Services, Markets

Tony Wakefield

ISBN: 1-4200-4653-5

IP Multimedia Subsystem: Service
Infrastructure to Converge NGN,
3G and the Internet

Rebecca Copeland

ISBN: 0-8493-9250-0

MPLS for Metropolitan Area Networks
Nam-Kee Tan
ISBN: 0-8493-2212-X

Performance Modeling and Analysis of
Bluetooth Networks: Polling, Scheduling,
and Traffic Control

Jelena Misic and Vojislav B Misic

ISBN: 0-8493-3157-9

A Practical Guide to Content Delivery
Networks

Gilbert Held

ISBN: 0-8493-3649-X

Resource, Mobility, and Security
Management in Wireless Networks
and Mobile Communications

Yan Zhang, Honglin Hu, and Masayuki Fujise
ISBN: 0-8493-8036-7

Security in Distributed, Grid, Mobile,
and Pervasive Computing

Yang Xiao

ISBN: 0-8493-7921-0

TCP Performance over UMTS-HSDPA
Systems

Mohamad Assaad and Djamal Zeghlache
ISBN: 0-8493-6838-3

Testing Integrated QoS of VolP:
Packets to Perceptual Voice Quality
Vlatko Lipovac

ISBN: 0-8493-3521-3

The Handbook of Mobile Middleware
Paolo Bellavista and Antonio Corradi
ISBN: 0-8493-3833-6

Traffic Management in IP-Based
Communications

Trinh Anh Tuan

ISBN: 0-8493-9577-1

Understanding Broadband over
Power Line

Gilbert Held

ISBN: 0-8493-9846-0

Understanding IPTV
Gilbert Held
ISBN: 0-8493-7415-4

WiMAX: A Wireless Technology
Revolution

G.S.V. Radha Krishna Rao, G. Radhamani
ISBN: 0-8493-7059-0

WiMAX: Taking Wireless to the MAX
Deepak Pareek
ISBN: 0-8493-7186-4

Wireless Mesh Networking: Architectures,
Protocols and Standards

Yan Zhang, Jijun Luo and Honglin Hu

ISBN: 0-8493-7399-9

Wireless Mesh Networks
Gilbert Held
ISBN: 0-8493-2960-4

AUERBACH PUBLICATIONS

www.auerbach-publications.com
To Order Call: 1-800-272-7737 e Fax: 1-800-374-3401
E-mail: orders@crcpress.com

Context-Aware
Pervasive Systems

Architectures for a New Breed of Applications

SENG LOKE

/\ Auerbach Publications
A Taylor & Francis Group
Boca Raton New York

lications is an imprint of the
Taylor & Franc is Grou p, an informa business

Auerbach Publications

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2007 by Taylor & Francis Group, LLC
Auerbach is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10987654321

International Standard Book Number-10: 0-8493-7255-0 (Hardcover)
International Standard Book Number-13: 978-0-8493-7255-1 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are
listed. Reasonable efforts have been made to publish reliable data and information, but the author
and the publisher cannot assume responsibility for the validity of all materials or for the conse-
quences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any
electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC)
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Loke, Seng.

Context-aware pervasive systems : architectures for a new breed of applications
/ Seng Loke.

p.cm.

Includes bibliographical references and index.

ISBN 0-8493-7255-0 (alk. paper)

1. Ubiquitous computing. 2. Mobile computing. 3. Software architecture. I.
Title.

QA76.5915.L65 2006
005.1'2--dc22 2006049923

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the Auerbach Web site at
http://www.auerbach-publications.com

DEDICATION

To my Creator who knows all about aware systems, living and nonliving.

In memory of my dad (1936-1998) who is now much more aware
of important things and the Lord Jesus Christ.

PREFACE

Context-aware mobile computing has been a topic for research since one
of the earliest Ph.D. dissertations appeared on the topic in 1994. Recently,
context-aware computing has enjoyed remarkable attention from research-
ers in diverse areas such as distributed computing and human—computer
interaction. Such aware systems have become one of the most exciting
concepts in early 21st-century computing, fueled by recent developments
in pervasive computing (i.e., mobile and ubiquitous computing) including
new computers worn by users, embedded devices, smart appliances, and
sensors surrounding users and varieties of wireless networking technology.
Software and hardware systems that are ubiquitous and aware of users,
and their physical and virtual context (e.g., environment and circum-
stances), and can respond intelligently to what is perceived is an exciting,
if not increasingly vital, addition to daily life and work. Whereas the idea
of context has been studied in logic and the meaning of natural language
sentences, the notion of context is being revisited in mobile and ubiquitous
computing work. The experience economy has taught us that experience
matters, and context awareness is a key idea for providing new experiences
with devices, appliances and software systems, and automatic behaviors
for convenience and innovative applications.

This book is a gentle introduction to a new breed of computer
applications termed context-aware pervasive systems, and attempts to pro-
vide architectural blueprints for building context-aware behavior into
applications. The book reviews the anatomy of context-aware pervasive
applications, including:

B Context-aware mobile services

B Context-aware devices, appliances, and smart things

B The integration of context-aware computing with software agents
and the Web

vii

viii B Context-Aware Pervasive Systems

B The use of context awareness for addressing, and communication
between, people, devices, and software agents

B Context-aware controlled sensor networks

B Context-aware security frameworks

B Context awareness via mirror worlds

In this book we aim to capture general design principles and archi-
tectures for context-aware applications. These applications are certainly
not exhaustive and only serve to illustrate the usefulness and potential of
context awareness in mobile and ubiquitous systems, and the range and
diversity of context-aware behaviors, to the extent that can be done within
one book. The book also highlights the notion of mirror worlds (a term
I believe originated in Gelernter’s book) and its interesting applicability
to building aware systems, and discusses declarative approaches to con-
structing such systems. I have often used examples from my own work
to illustrate the concepts presented here, perhaps not surprisingly; where
appropriate, T have noted work by others in the area. Although related
work has been surveyed, there is work which I have left out, given the
extent of activity in the area. I trust that readers will find the extensive
set of references useful, and use this book as a platform to further explore
the area.

Context-aware pervasive computing is still an area of active research,
and we will indeed develop a deeper understanding of such systems,
better techniques, and architectures of greater generality. Hence, one faces
a dilemma about writing a book too early for an area that is still growing
and in many ways changing. Nevertheless, I feel that there is a need for
such a book, serving as a timely and relevant introduction to the emerging
breed of context-aware systems, and presenting an initial step toward
bringing together in one volume architectures and principles — as they
relate to the applications covered — of such systems, providing material
already in use by practitioners and enthusiasts in an exciting field.

One of the titles initially selected for this book was Inside Aware
Systems: Introducing the Software Architectures of a New Breed of Appli-
cations. Dropping the “context” from “context-aware” is a move toward
a more general concept, which perhaps this book can help develop.

Readers can become acquainted here with an increasingly important
new breed of software and their implications and possibilities, even if
they are not experts in the field or directly work in the area. Students
and researchers new to the area can quickly obtain familiarity with key
ideas and concepts of the topic, all in one place, acquiring a framework
by which to understand related work and perhaps to start working in the
area. Practitioners can take the designs and architectures presented and
implement their own versions of the systems, adding their own features

Preface m ix

or improvising as their applications require. Researchers from other areas
can find application of their own expertise within the area of aware
systems, based on the abstract architectures presented here. Nontechnical
readers, skipping over the technical material, will still be able to gain an
appreciation for the ideas and concepts within the area.

ACKNOWLEDGMENTS

This book existed in an early form in bits and pieces, distributed in several
papers, and published in a number of conference and workshop proceed-
ings and journals over the past few years. The substance of this book is
not the work of one person. I would like to thank the many graduate
students and colleagues who worked with me on these topics and continue
to do so. To mention a few, Evi Syukur, Thin Thin Naing, and Angel On
Kei Tam worked on mobile services; Sutardi on the context-aware mobile
phone prototype; Shonali Krishnaswamy, Andiwijaya Sumartono, and Su
Hui Chuah on the CALMA agent-based Web service framework; and Amir
Padovitz and Arkady Zaslavsky on context-aware messaging and context
modeling. Suan Khai Chong and Shonali worked with me on context-
aware sensors (Chapter 7 is, in fact, based on a draft paper that Khai
wrote); Yong Jin Sim on a mutual awareness model for devices (mentioned
in Chapter 9), and Pravin Shetty explored context-aware security with me.
I also would like to thank Toan Phung, Budi Halim, and Jonathan Yu for
helping with the location-based agents’ prototype and contributing ideas
over their summer vacation. The students helped turn what is in our
imagination into real working systems on real devices, and I thank them
for giving me the satisfaction of seeing my imagination crystallized. The
Mobility, Agents and Pervasive Systems Group at Monash University,
Caulfield, Melbourne, was a wonderful environment in which to think,
pursue, and realize new ideas and concepts.

I completed this book at La Trobe University’s Department of Computer
Science and Computer Engineering, and I would like to acknowledge the
conducive and supportive department that it is. It is both encouraging and
invigorating to be in an environment excited about pervasive computing.

Xi

ABOUT THE AUTHOR

Dr. Seng Loke is currently a senior lecturer in the Department of Computer
Science and Computer Engineering at La Trobe University, Melbourne,
Australia, and is also an honorary associate of the Center for Distributed
Systems and Software Engineering at Monash University. He was previ-
ously a senior fellow at Monash University. He has published more than
130 papers as book chapters and in journals, conferences, and workshops.
He co-leads the Pervasive Computing Group at La Trobe.

xiii

CONTENTS

What Is Context-Aware Behavior?vvccccccccccneeeeeennennee 1
1.1 Current Computing Trends: From the Virtual to the Physical 2
1.2 Context, Context Awareness, and SitUationS..............cccc.ccoovvireiiinieeann. 4
1.3 When Systems Become CONtEXt AWATEcc.cceeriiiieniiiiiiiiiiieieaeeeeaens 7

1.4 An Overview of This Book
References. ..o

The Structure and Elements of Context-Aware Pervasive

)] 15 1.0 LN 13
2.1 ANALOGICS .. i 13
2.2 The Elements of a Context-Aware Pervasive Systemc....... 15
2,21 SEINSING c.tiiieeiiiie et 15
2.2.2 ThINKING ..ottt 20
2.2.3 ACHNG ..o 24
2.3 An AbStract ArChItECIUIEcviiiiiiiiiiiii ettt 24
2.4 Infrastructures, Middleware, and TOOIKItSc...coevviiiiiiiiiiiiennne. 26
2.5 Issues of Security, Privacy, and Efficiency........ccccccooviiiniiniiniinicinne 27
2.0 SUIMIMIATY ..ottt ettt ettt 27
REFEIEICES. ...t 28
Context-Aware Mobile ServiCes......cccccccccceeeeeeeeeeeennceneeeeeeenanneees 31
3.1 The Rise Of MODIle SEIVICES......cccoeiiiiiiiiiiiiiieiii it 31
3.2 Context for Mobile Device USEIS........cocueiiiiiiiiaiieeiie e 33
3.3 Location-Based SEIVICESccoooviiiiiiiiiiaiiieeie et 33
3.4 AMDIENT SEIVICES .oiivviiiiiiiiiiiiii et 34
3.4.1 PointROCK EXaMPLEcoooiiiiiiiiiiiiiiiiiiiicee e 37
3.4.2 Future E-Martketplacesccoviiiiiiiiniiiiiiiiiccecc 38
3.4.3 Office Building Exampleccooiviiiiiiniiiiiiiieieecc, 42
3.4.4 A Software Architecture for Ambient Servicescccooevenni.. 44
3.5 From Ambient Services to Place-Based E-Communities 49
3.5.1 Interaction between User and Community Server.................. 50

XVi

® Context-Aware Pervasive Systems

3.5.2 Interaction between User and Multiple Communities:

Impact of USer MOVEMENT.......cccveiiiiiiiiaiiaieaie e 51
3.6 Enhancing Context-Aware Mobile Services with Mobile Code
and Policy: The MHS EXampIecccooieiiiiiiiiiiniiniiiiseee
3.6.1 MHS Architecturec.cocovveiiiiannnn.
3.6.1.1 Policy Conflict Resolution
3.6.2 Context-Based Policy Control of Media Player Service........... 55
3.6.3 Partial Control between User and Syst€mc..ccooveevennenn. 60
3.0.4 MHS SUIMIMATY ...ovoviiiiiiiiiiieee ettt 61
3.7 Enhancing Context-Aware Mobile Services with Multiagent
Technology: The Example of Proximity-Based Reverse Auctions...... 61
3.7.1 Proximity-Based Reverse AUCHONSccoovveiiiiiiieiienieeneenen, 61
3.7.2 A System for Proximity-Based Reverse AUCHONScco...... 63
3.7.2.1 Architectural OVerviewccoocveieiiiiieieiieieeeee 63
3.7.2.2 From the User's VIEWPOINTccocvvvieiinieiiiiaeeinns 05
3.7.2.3 Interaction ProtOCOIS..........cocovieriiiiiiiiieiieiieneeeenn, 67
3.7.2.4 Observing Auctions via Auction Events 68
3.8 Summary and Further Developments...........ccoocveriiiiiiiiienieneaee, 70
ACKNOWIEAGMENT ... 71
REOICIICES. ... 71
ConteXt-AWare Artifactscceeeeeeirinneneeeeiecciiisnsnneeeeeececsssnnnnnes 75
4.1 AWATe ODJECES. ..ottt 75
4.2 Architectural Design Space for a Context-Aware Artifact............... 82
4.3 Context-Aware Mobile Phones: An TUstration...........ccccoecveveeneeenne. 84
4.3.1 Overview of a Framework for Context-Aware Mobile
Phone with User Preferences: The CAMP-UP System............. 84
4.3.2 CAMP-UP System Interaction
4.3.2.1 On the Space Side....................
4.3.2.2 On the Client Side....................
4.3.3 Prototype and Discussions....................
4.3.4 Scenarios
4.4 Summary..................
References..........cccceeean.

Context-Aware Mobile Software Agents for Interaction
with Web Services in Mobile Environments............eeeeeeeeene. 105
5.1 Agents: Mobile and Intelligent
5.2 SCEIMATIOS ..vieuiiiiiit ettt ettt
5.3 A Brief Review of Agent Platforms for Ubiquitous Computing....... 108
5.4 CALMA ArChit@CtUICoiviiiiiiiieicet e
5.4.1 CALMA Agent Model
5.4.2 Server COMPONENTuviiriiiiiieiiiiieieaieesieeiteeseesseeieesieaeeaneens
5.4.3 Mobile Device COMPONENEcvivuieriieiieiieieeieeieeiienienieaieas
5.5 Prototype Implementation and Evaluation
5.5.1 THustrative SCENATIOSeouiiuieiiiiiiiieiiieiceit e 117
5.5.1.1 Booking Movie TiCKetsccccccerviiriiriariiiienienirnn, 117

Contents ® xvii

5.5.1.2 Finding an IDD Calling Card...........ccccoccoiiiiinnnnn.

5.5.2 Enabling Lightweight Behavior..........cccccooiviiiiiiiiiiiiiciicn,
5.5.3 Enabling Context Awareness..................
5.5.4 Performance Evaluation
5.6 SUMMALY.....cooviioriiiieriieseeeieeeiennns
ACKNOWIEAGMENTS ...ttt
REECICIICES ..ottt

Context-Aware Addressing and Communication for

People, Things, and Software AGents.........ceeeeeeeeeeeeeeeeeeceeceeees 127
6.1 Context-Aware Communication for People............cccovviiiiiiiinnns, 128
6.1.1 APPHCAON TYPES c.ovveiiriiieieieieieieieiet ettt 128
6.1.2 Call SEIVICES......oviiiiiieiiiii et 131
6.1.3 More APPlICALIONSccooviiiieiiieieiiieeeee e 132
6.1.4 SUMMEATY ...ovoviiieiiiieeeeeee ettt 133
6.2 Context-Aware Addressing and Commanding for Objects 133
6.2.1 APPHCAON TYPES .ovviviiiiiiiiiiieieeie ettt
6.2.2 A View from Situation Semantics
0.2.3 SUIMMMATY ...vvivvieiiiieee ettt ettt
6.3 Context-Aware Communication for Software Agents 138
6.3.1 Addressing Agents via CONEXL..........ccooveieiiveiiieiariireineeneans 138
0.3.2 APPHCALONS ...t 139
6.4 Summary and CoONClUSIONccooiiiiiiiiiiiiie e, 140
REOICINICES. ... it 141
Context-Aware Sensor NEtWOTrKS.........eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneees

7.1 Context-Aware Sensors: The CONCEPLoovvviviiiiiiiiiiiiiieeeieeiie e
7.2 A Framework for Context-Aware Sensors
7.2.1 SensOr ROIEScoouiiiiiiiiiiiiiiic e
7.2.2 Categorizing Energy Consumption
7.2.2.1 Input Alphabet.........................
7.2.2.2 Output Alphabet
7.2.2.3 Energy States.............
7.2.3 ArCRITECTUIC ..ottt
7.3 Implementation and Application Scenario
7.3.1 Experimental INVeStigations...........cccocvevverieiieiiieiieiieneaie s 153
T4 SUIIMIATY .ttt 156
ACKNOWIEAZMENT ... 156
REFEIEIICES. ...t 157
CONLEX-AWALre SECULItY .c..ucreeeuriireeeuiirenerireeeeiireeeeiereeeesenenenss

8.1 Traditional Security Issues and Models
8.2 Context-Aware Security Systems

8.2.1 Examples......cccoovviiviiicninnnn.

8.2.2 Context-Aware Policies...........
8.2.2.1 Contextual Graphs.........ccceoiiiereiieieiieieeieierenn, 165
8.2.2.2 LOGICu ittt 166

8.2.2.3 ROIES ..ot 167

xviii

® Context-Aware Pervasive Systems

10

11

8.3 From Context-Aware Security to Context-Aware Safety.................... 169

8.4 Summary

REOICIICES. ...t

Context Awareness and Mirror-World Models...................... 173

9.1 Gelernter’s Mirror WOIldSccceiieriiiiiiiiiiee e 173

.2 INEXUS. ..ottt 175

9.3 Virtual Worlds, Virtual ENvironments...............coovvveeeeiineieiiiiieeiiineeens 176

9.3.1 Aura, Focus, and Nimbus: Virtual Objects and Real-World

ODJECES ittt

9.4 DIGItAl CIES....eoveiiiieieie et

9.5 Aware Spaces: Smart Environments and Smart Spaces
9.6 Mirror Worlds: Context and Ontologies
9.7 Summary
REFETEIICES ...ttt 186

Constructing Context-Aware Pervasive Systems:
Declarative Approaches and Design Patternsccccceeueueeee.
10.1 Representing SItUATIONScceeiviiiiiiiiiieeiiiiiiie e
10.1.1 The Situation Program.............ccccceveene..
10.1.2 MOAUIATIEY ...t
10.2 Five Other Ways to Represent a Meetingccccocevvviviienienienianns
10.2.1 ODBSEIVALIONSvviiiiiieiiiiteit e 197
10.3 Metaprogramming with Situation Programs: Examples..................... 198
10.4 Another Declarative Approach.............ccoccocoiiiiiiiiiiiiiii, 199
10.5 Toward Design Patterns for Context-Aware Applications:
Situation Patterns

10.6 Summary..................
Acknowledgment
References.........ccccecvenniinn
A Future with AWare SYStEMSccceeeercccsccssccnecsseossocsssossosses 207
11.1 The Emerging Future: Taking Awareness for Granted..................... 207
11.2 Scalability and Usabilityccooiiiiiiiiiiiiiiiiie e 208
11.3 FInal WOTAS ..cviiiiiiiiiiiicic e 209

WHAT IS CONTEXT-AWARE
BEHAVIOR?

“Good morning, Smith! Coffee is boiling and your E-newspaper has been
downloaded,” a pleasant voice greets you as you walk into the kitchen
from the bedroom. As you sit in your car, the seats, mirrors, and steering
wheel are automatically adjusted — your son had been using your car
last night. In the office, as you sit on the chair in front of your desk, the
height of the chair is automatically adjusted — your short colleague had
been sitting in your chair, again — and you are automatically logged in
to your computer. At lunch time, while in the mall, you are greeted with
messages appearing on your smartphone from restaurants serving your
favorite Chinese noodles, located no more than 200 m away. Only one’s
imagination could limit the possibilities of systems that can be aware of
people’s situations or their contexts and do things for them. The Economist
discusses the sentient office! containing technologies that are convivial
not only in the office but also at home, “using information about where
you are in your home to control the lighting or ensure that only your
nearest telephone rings or that the television program you are watching
follows you from screen to screen as you move between rooms.” Movies
such as Artificial Intelligence, I, Robot, and The Matrix contain futuristic
scenarios that, if not going even further beyond, touch the boundaries of
what is achievable. But it is not only robots which can have the ability
to sense, reason, and act — almost anything can, from the coffee cup,
television, soft toys, and the house to the bed.

U http://www.economist.com/science/tq/PrinterFriendly.cfm?Story_ID=1841108.

2 ®m Context-Aware Pervasive Systems

1.1 CURRENT COMPUTING TRENDS: FROM THE VIRTUAL
TO THE PHYSICAL

Programmers have tremendous power to exert their imagination to create
not only office applications but also virtual worlds. From games program-
ming to avatars, virtual environments have become widespread. Recently,
increasing attention is being placed on augmenting the physical environ-
ment using information technologies. Pattie Maes’ intelligence augmenta-
tion? is a phrase used to describe how the physical world can be enriched
with intelligent behavior. An area can become an avenue where technol-
ogies “pile up” and become interactive (McCullough, 2005) and somewhat
aware of their inhabitants, leading to the notion of smart environments,
the creation of which has been documented by Cook and Das (2004).
Computer systems that surround, pervade, and intelligently serve peo-
ple in pleasant and unobtrusive ways provide a vision that has seized the
imagination of many. These computer systems might not fit the traditional
image of a computer sitting on a desk. Articulation of this vision and its
variations has resulted in buzz phrases such as wubiquitous computing,
pervasive computing, invisible computing, the disappearing computer, pro-
active computing, autonomic computing, ambient intelligence, and sen-
tient computing. But these are not merely phrases; much technology lies
beneath the new vocabulary and are being developed under these topics.

B Ubiquitous computing (Weiser, 1991)3 refers to the collective use
of computers available in the physical environment of users, per-
haps embedded in a form invisible to users. This is the vision of
the late Mark Weiser from Xerox PARC for putting computers out
into everyday living environments, instead of representing the
everyday living environment in the computer.

B Pervasive computing refers to the vision of devices or computers
pervading lives, as IBM Chairman Lou Gerstner once described:
“... A billion people interacting with a million E-businesses with
a trillion intelligent devices interconnected.” Pervasive computing
can be viewed as a combination of mobile computing (use of
computers worn on or carried by users) and computers embedded
in the fixed environment and so can be understood as another
term for ubiquitous computing.

B Jnvisible computing (Norman, 1998; Borriello, 2000) refers to the
use of computers in such a way that the task is focused on and
facilitated, without too much focus on the tool (i.e., the computer

2 http://www kurzweilai.net/meme/frame.html?main=/articles/art0264.html.
3 See also http://www.ubiq.com/hypertext/weiser/UbiCACM.html and http://en.
wikipedia.org/wiki/Ubiquitous_computing.

What Is Context-Aware Behavior? ®m 3

system) itself. Often, we simply want a task to get done (e.g., get
a message to someone), and we might not want to focus on, or
wrestle with, the software or the hardware that enables the task.
If there is a cognitive burden on the user in employing a tool to
perform a task, the more this burden is laid on the task rather
than the tool, the better. The overlap with the ubiquitous com-
puting vision is clear; the many computers in the everyday envi-
ronment that the user might interact with are merely the tools to
perform tasks and so should be given only as much attention as
a tool deserves.

B The European Union-funded disappearing-computer initiative?
aims to create artifacts commonly seen or used in everyday life
with computational capabilities (using some combination of hard-
ware and software) and the ability to work together to produce
new behaviors. It also looks at people’s experiences with envi-
ronments comprised of such artifacts. The initiative has a number
of projects, including those that explore wearable computer
devices and that study how a colocated collection of gadgets
might cooperate.’

B Proactive computing (Tennenhouse, 2000) refers to a focus away
from interactivity to computers anticipating user needs and taking
action on users’ behalf. The idea is that human attention devoted
to interaction can be reduced so that users can focus on higher-
level tasks.

B Another recent topic is autonomic computing (Horn, 2001), which
is about building systems that can self-monitor, self-heal, and self-
configure. Proactive and autonomic computing overlap, in that they
both relate to ubiquitous computing systems and could utilize
context information about the environment of the system and users
to operate or make decisions. However, they differ in their empha-
sis on the kind of system behavior to be achieved. A deeper
comparison between autonomic and proactive computing is pre-
sented by Want et al. (2003).

B Ambient intelligence (Marzano and Aarts, 2003) builds on ubiqui-
tous computing and intelligent user interfaces to obtain greater
user friendliness and efficient services for users. To quote from
Ercimnews® “In this vision, people will be surrounded by intelligent
and intuitive interfaces embedded in everyday objects around us
and an environment recognizing and responding to the presence

4 See the main Web site for the initiative: http://www.disappearing-computer.net/.
> http://www.extrovert-gadgets.net/.
¢ http://www.ercim.org/publication/Ercim_News/enw47/intro.html.

4 m Context-Aware Pervasive Systems

of individuals in an invisible way by year 2010.” Certainly, context-
aware computing overlaps with the ambient intelligence vision.

B Sentient computing (Hopper, 2000)” refers to systems “using sensors
and resource status data to maintain a model of the world which
is shared between users and applications.” Because such systems
try to build a model of a part of the world from sensory information
about the user’s circumstances and environment, the idea is very
much suggestive of, if not synonymous with, context-aware com-
puting but with an emphasis on the world model.

From the brief description of the topics mentioned, the reader can
easily observe the overlap in the technologies they aim to create. Ubig-
uitous, pervasive, disappearing, invisible, proactive, autonomic, and sen-
tient computers exhibiting intelligent behavior and surrounding the user
are a current goal in computing. An aspect of this vision is context-aware
behavior in a pervasive computing setting. The next section explores
further the notion of context and context awareness.

1.2 CONTEXT, CONTEXT AWARENESS, AND SITUATIONS

The notion of context has been observed in numerous areas, including
linguistics, philosophy, knowledge representation and problem solving in
the field of artificial intelligence, and the theory of communication (Akman,
2002; Bouquet et al., 2003; McCarthy, 1993; Brezillon, 2003). In most work
of this nature, context is a key notion (e.g., treated as first-class objects
in a logic), and logics have been developed to enable assertions to be
made about contexts and allow context to be reasoned about explicitly
in knowledge-based systems.

What is context? The Free Online Dictionary of Computing® defines
context as “that which surrounds, and gives meaning to, something else.”
This definition can be specialized to the application at hand. Whether that
“something” is an assertion in a logic, a person, an utterance, or a computer
system, with a suitable definition for “meaning,” the intuition captured by
the word context serves its purpose. Schilit et al. (1994) define context
from the perspective of distributed and mobile computing, where a person
is that “something,” and context refers to information about a person’s
proximate environment, such as location and identities of nearby people
and objects.

Dey (2001) gives an operational definition of context, which turns out
to be very useful in practice and suitable for pervasive computing: “Context

7 See http://en.wikipedia.org/wiki/Sentient_computing.
8 http://www.dictionary.com.

What Is Context-Aware Behavior? ®m 5

is any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user
and applications themselves.” There has been much work in identifying
what such information can be, the structure of the information, how to
represent such information, and how to exploit context in specific
applications. Contexts can include information such as location (e.g., of
people or objects), time, execution state of applications, computational
resources, network bandwidth, activity, user intentions, user emotions
(Picard, 1997), and conditions of the environment (Dey, 2001). Models
might be used for more complex kinds of contextual information, such
as location models,” world models (e.g., Lehmann et al., 2004), and
activity models'® (e.g., Muhlenbrock et al., 2004; Koile et al., 2003; Tapia
et al., 2004).

Indeed, there is tremendous diversity in what can be context, and the
way context can be acquired and modeled is an avenue of much research.
Recent workshops!! have focused on just this topic. To address the
challenges in representing, structuring, managing, and using context,
various knowledge-representation formalisms and techniques have been
applied, including ontologies (Chen et al., 2004; McGrath et al., 2003;
Wang et al., 2004; Matheus et al., 2003) that provide concepts for describing
context and enable reasoning with and reuse of contextual information,
first-order logic theories (Katsiri and Mycroft, 2003; Ranganathan and
Campbell, 2003), and conceptual graphs (Peters and Shrobe, 2003). One
needs to consider what aspects of the physical world to sense for a given
application to operate. The ontologies provide a vocabulary of concepts
with which to express contexts, and formal mathematical representations
enable automatic reasoning with the knowledge on the computer.

Pervasive computing utilizes contextual information about the physical
world. This implies a number of important concerns related to the con-
nection of sensor information to context-aware pervasive computing,

9 See http://research.microsoft.com/workshops/UbiLoc03/.

19 Typically, activity refers to some action or operation undertaken by a human being,
such as bathing, studying, preparing breakfast, and playing table tennis, and so differs
from one situation to another. Perhaps one could conceive of a person in the state
of preparing breakfast as “a situation.” However, in general, activity and situation
are clearly not interchangeable, and we consider activity as a type of contextual
information that can be used to characterize the situation of a person (e.g., that
“breakfast is being prepared” means the person is busy or has just woken up).
Examples of workshops on context are the Workshop on Context Modeling and
Reasoning (CoMoRea 2004), Workshop on Modelling and Retrieval of Context (MRC
2004) (http://mrc2004.wysart.de/), and Workshop on Advanced Context Modelling,
Reasoning, and Management 2004.

=

6 ®m Context-Aware Pervasive Systems

including (1) what can be feasibly sensed, (2) the best way to acquire
sensor information, and (3) how to reason with sensor information to
infer context. In fact, any information which can be practically obtained
via sensors can be used as context, including the emotional states of users
and movements.

When the entity is an artifact instead of a person, we have context-
aware artifacts. From buildings to dolls, one can add such sensors to
endow these artifacts with the ability to act on sensed information about
the physical world. Making such artifacts “aware” enables automatic behav-
iors without users’ direct intervention and can enhance the function of
the artifact or add aesthetic value, both of which can differentiate an
artifact from others in the marketplace.

Closely related to the notion of context is the notion of situation. The
relationship between context and situation is illustrated in Dey’s opera-
tional definition cited earlier. A definition of situation from the American
Heritage Dictionary*? is as follows: “The combination of circumstances
at a given moment; a state of affairs.” Besides describing context, Dey
(2001) also defines situation as “a description of the states of relevant
entities.” So, the idea is to aggregate (perhaps varieties of) context
information to determine the situation of the entities (relevant to an
application). In this sense, we can view situation as being at a higher
level of abstraction than context.

Similar to context, the notion of situation has been explored in artificial
intelligence (AD), philosophy, and linguistics, such as in situation theory
(Barwise and Perry, 1983) and situation calculus. This perspective consid-
ers the primacy of the situation abstraction and has noted that an agent
(e.g., a human) is able to individuate a situation. According to Devlin
(1991), a situation is a “structured part of reality that it (the agent) somehow
manages to pick out” by “direct perception of a situation, perhaps the
immediate environment, or thinking about a particular situation,” and
“individuation of a situation by an agent does not (necessarily) entail the
agent being able to provide an exact description of everything that is and
is not going on in that situation.”

The notion of situation can be useful in pervasive computing in that
the situation abstraction allows the modeler or application designer to
effectively “carve the world up” into manageable pieces, which can then
be recognized by the system via its sensors. It might also be possible to
compose such pieces to construct more complex models of situations, as
we shall see later in the book. A system can become aware of the context
of a given set of entities and then guess what situations those entities are

12 Accessed from http://www.dictionary.com.

What Is Context-Aware Behavior? m 7

in, or detect a change of situation. Machine understanding of situations
is a goal of gathering contextual information.

1.3 WHEN SYSTEMS BECOME CONTEXT AWARE

Quoting from Schilit (1995): “... Context-aware software adapts according
to the location of use, the collection of nearby people and objects, the
accessible devices, as well as changes to those objects over time. A system
with these capabilities surveys the computing environment and reacts to
changes to that environment.” Context-aware pervasive computing is a
study of pervasive computer systems (a combination of hardware and
software)!? that are aware of context and can automatically adapt and
respond to such context. Context awareness enables the system to take
action automatically, reducing the burden of excessive user involvement
and providing proactive intelligent assistance.

Saha and Mukherjee (2003) consider such use of perceptual information
about the environment an essential ingredient of pervasive computing
systems,'* distinguishing them from traditional computing. Such context-
aware pervasive systems have wide-ranging applications, including con-
text-aware information retrieval (Brown and Jones, 2001), reminder sys-
tems (Rhodes, 1997), context-aware mobile services and electronic tour
guides (Abowd et al., 1997), sentient objects (Fitzpatrick et al., 2002; Biegel
and Cahill, 2003), sentient cars (Vidales and Stajano, 2002), sentient
buildings,'> context-aware response to emergencies,'® and intelligent con-
text-aware environments (Shafer et al., 2001), with potential benefits to
society, ranging from proactive automated healthcare (Bardram, 2004)"
and effective E-commerce (Jin and Miyazawa, 2002) to more effective
military systems (van der Poel, 2002) and safer cars. Indeed, one can also
utilize context awareness in security warning systems in the home or
public spaces. Many future computing systems will advantageously be
context aware, and context-aware systems are becoming increasingly
important, receiving worldwide attention from academia and industry.

From robots to automatic surveillance systems, one could think of
many existing systems that might be viewed as having “awareness.”
However, there is a rethinking of what it means for systems to be context
aware, and research continues on general principles and architectures, as

13 We keep in mind that the systems might not look like a typical computer or be
recognized as such by users.

14 Pervasive computing combines mobile computing and ubiquitous computing (Sat-
yaranayan, 2001).

5 See http://www.wikipedia.org/wiki/Sentient_computing.

16 See http://guir.berkeley.edu/projects/emergency/.

7 See http://www.pervasivehealthcare.dk/projects/.

8 m Context-Aware Pervasive Systems

well as specialized designs. There is also the application of this idea to
many different items, yielding “context-aware <object>" where <object>
could, in theory, be almost anything. It is not only that new kinds of
artifacts and computer applications are made possible by context aware-
ness, but existing desktop applications can usefully be made context aware.
Traditional applications, which normally run on a desktop environment,
can be driven or controlled by contextual information about users. For
example, Windows Media Player can be made context aware — starting
and stopping according to who is in the room or the mood of its occupants.
Also, as mentioned, an artifact can be made context aware in different
ways, i.e., being aware of different kinds of contextual information and
reacting to situations in different ways. Such awareness is perhaps one
aspect of objects when they start to think (Gershenfeld, 1999).18

A new breed of computer systems is emerging that is context aware
and so different from traditional computer applications of past decades.
These systems will be more sensitive to the real world and attuned to the
purposes for which they have been developed.

1.4 AN OVERVIEW OF THIS BOOK

This book looks at the architectures and internals of examples of context-
aware pervasive systems, illustrating how they work and how they can
be designed. Chapter 2 presents a generic abstract architecture for context-
aware pervasive systems, noting its core elements. Such an architecture
represents a general blueprint for the examples that follow (perhaps
implicitly) in the book — each example adding its own specific features.
The chapter also discusses the different areas of computing that building
such systems tend to integrate, including software engineering, Al reason-
ing, sensor networks, and Internet computing.

Mobile services, appliances and smart devices, software agents, elec-
tronic communication, sensor networks, and security frameworks are
topics worthy of their own books, and books have indeed been written
on these topics. In Chapter 3 through Chapter 8, we provide a brief
introduction to these topics before showing how context-aware behaviors
can be explored for these topics.

Chapter 3 focuses on context-aware mobile services. Internet-based
digital services have become increasingly important to daily life, and early
ideas of context-aware computing have been explored in connection with
mobile devices. Indeed, mobility of persons and devices gives rise to a
change of location. Not only is location a key type of contextual infor-
mation, but a change in location often comes with a change in the

18 See Web site on the “Things That Think Consortium,” http://ttt. media.mit.edu/.

What Is Context-Aware Behavior? ® 9

environment, yielding a corresponding change in other types of contextual
information. Where a person or device is situated can speak volumes
about a person’s situation as we shall see. Location and place do matter.

Chapter 4 discusses context-aware devices, appliances, and smart
things. Pervasive computing encourages the imagination — what if com-
putational ability is added to the ordinary mundane objects we see
everyday? Perhaps outrageous is a kettle that senses you (or whoever is
in the kitchen) and is able to make small talk with you (or the person it
identifies), giving you some good news or relaxing words while it boils
the coffee during your break. Is such ability feasible? What are some
efforts in this area? What software architectures are involved? What is the
scope of the computational abilities required? These are some questions
the chapter seeks to answer.

Intelligent software agents (Wooldridge, 2002) are a recent area of
research that has spread like wildfire through computing labs throughout
the world. Although a hot topic in itself, there is an interesting overlap
between the essence of context-aware systems and the concept of the
intelligent software agent. Which metaphor to use in designing effective
computer systems is a question to be answered. Chapter 5 introduces
intelligent software agents and discusses an example of context-aware
agents used with the Web.

In the real world, context is key to identifying or addressing someone
or something and in sending and receiving messages (whatever form they
may be). We are very much embedded within a world which gives
meaning to our communication and helps us identify people and objects
and direct our messages. For example, we can talk about a person next
to someone else we know as a means of identifying the person or about
putting off receiving a communication (e.g., a phone call) because of
current circumstances. Chapter 6 discusses the use of context awareness
for addressing, and communication between, people, devices, and soft-
ware agents.

Sensor networks are in many ways to pervasive systems what the five
senses are to a human being. Sensor networks are, nevertheless, a complex
topic in itself, from networking to query processing. We focus on a specific
aspect of sensor networks, i.e., power management. Chapter 7 considers
how sensors themselves can be aware of their own situations and explores
an application of this idea to power saving, one of the key issues in the
use of sensor networks.

Distributed computing has added a new range of security issues to
traditional desktop computing. Mobile computing has gone even further,
bringing in further new security concerns. Chapter 8 looks at the use of
physical context for controlling and enhancing security in pervasive com-
puting environments.

10 ®m Context-Aware Pervasive Systems

Chapter 9 and Chapter 10 consider two useful perspectives on building
context-aware systems and environments. Chapter 9 describes the notion
of mirror worlds and explains how implementing such mirror worlds is
an approach to building aware systems, echoing the ideas in sentient
computing mentioned earlier in the context of a world model that is
utilized and maintained. Chapter 10 discusses design perspectives based
on a declarative programming language paradigm.

REFERENCES

Abowd, G., Atkeson, C., Hong, J., Long, S., Kooper, R., and Pinkerton, M., Cyberguide:
a mobile context-aware tour guide, ACM Wireless Networks 3, 421-433, 1997.

Akman, V., Context in Artificial Intelligence: A Fleeting Overview (English version of
Contesti in intelligenza artificiale: una fugace rassegna), in Penco, C., Ed., La
Svolta Contestuale, McGraw-Hill, Milano, 2002.

Bardram, J., Applications of context-aware computing in hospital work — examples
and design principles. Proceedings of SAC ‘04, March 14-17, Nicosia, Cyprus,
2004, pp. 1574-1579.

Barwise, J. and Perry, J., Situations and Attitudes, Cambridge, MA: MIT-Bradford, 1983.

Biegel, G. and Cahill, V., Sentient Objects: Towards Middleware for Mobile Context-
Aware Applications. European Research Consortium for Informatics and Math-
ematics, ERCIM News No. 54, July 2003.

Borriello, G., The challenges to invisible computing, IEEE Computer, 33(11), 123-125,
2000.

Bouquet, P., Ghidini, C., Giunchiglia, F., and Blanzieri, E., Theories and uses of context
in knowledge representation and reasoning, Journal of Pragmatics, 35(3),
455-484, 2003, Elsevier Science.

Brezillon, P., Representation of procedures and practices in contextual graphs, The
Knowledge Engineering Review, 18(2), 147-174, 2003, Cambridge University
Press.

Brown, PJ. and Jones, GJ.F., Context-aware retrieval: exploring a new environment
for information retrieval and information filtering, Personal and Ubiquitous
Computing Journal 5(4), 253-263, 2001.

Chen, H., Finin, T., and Joshi, A., An ontology for context-aware pervasive computing
environments, 7he Knowledge Engineering Review (special issue on Ontologies
Jor Distributed Systems) 18(3), 197-207, 2004.

Cook, D., and Das, S., Smart Environments: Technology, Protocols and Applications,
Wiley-Interscience, U.S.A., 2004.

Devlin, KJ., Situations as mathematical abstractions, in J. Barwise, J.M. Gawron, G.
Plotkin, and S. Tutiya (Eds.), Situation Theory and its Applications, CSLI,
Stanford, CA, 1991, pp. 25-39.

Dey, AK., Understanding and using context, Personal and Ubiquitous Computing
Journal, 5(1), 5-7, 2001.

Fitzpatrick, A., Biegel, G., Clarke, S., and Cahill, V., Towards a Sentient Object Model.
Position Paper Workshop on Engineering Context-Aware Object Oriented Sys-
tems and Environments (ECOOSE), Seattle WA, November 2002, available at
http://www.dsg.cs.tcd.ie/~biegelg/research/publications/biegel-som.pdf.

What Is Context-Aware Behavior? ®m 11

Gershenfeld, N. When Things Start to Think, Henry Holt and Company, New York, 1999.

Hopper, A., The Royal Society Clifford Paterson Lecture, 1999 — Sentient Computing,
Philosophical Transactions, Royal Society London, Vol. 358, August 2000, pp.
2349-2358.

Horn, P., Autonomic Computing: IBM’s Perspective on the State of Information Tech-
nology, October, 2001, available at http://www.research.ibm.com/autonomic/
manifesto/autonomic_computing.pdf.

Jin, L. and Miyazawa, T., MRM server: a context-aware and location-based mobile e-
commerce server, Proceedings of the 2nd International Workshop on Mobile
Commerce, USA, 2002, ACM Press, pp. 33-39.

Katsiri, E. and Mycroft, A., Knowledge representation and scalable abstract reasoning
for sentient computing using first-order logic, in Proceedings of the Challenges
and Novel Applications for Automated Reasoning (CADE-19 Workshop), July
2003, available at http://www.cl.cam.ac.uk/users/am/papers/nads03.pdf.

Koile, K., Tollmar, K., Demirdjian, D., Shrobe, H., and Darrell, T., Activity zones for
context-aware computing, in Proceedings of the 5th International Conference
on Ubiquitous Computing (UBICOMP 2003), 2003.

Lehmann, O., Bauer, M., Becker, C., and Nicklas, D., From home to world — supporting
context-aware applications through world models, in Proceedings of the 2nd
IEEE Annual Conference on Pervasive Computing and Communications (PER-
COM’04), TEEE Computer Society, 2004.

Marzano, S. and Aarts, E., The New Everyday View on Ambient Intelligence, Uitgeverij
010 Publishers, 2003.

Matheus, C., Kokar, M., and Baclawski, K., A core ontology for situation awareness,
in Proceedings of FUSION, July 2003, pp. 545-552, available at http://vistol-
ogy.com/papers/FUSIONO3.pdf.

McCarthy, J., Notes on formalizing contexts, in Ruzena Bajcsy, Ed., Proceedings of the
13th International joint Conference on Artificial Intelligence, Morgan Kauf-
mann, San Mateo, CA, 1993, pp. 555-560.

McCullough, M., Digital Ground, MIT Press, 2005.

McGrath, R.E., Ranganathan, A., Campbell, R.H., and Mickunas, M.D., Use of Ontologies
in Pervasive Computing Environments, Technical Report, UTUCDCS-R-2003-
2332 ULU-ENG-2003-1719, April 2003, available at http://mummy.intra-
net.gr/includes/docs/MUMMY-D11y1-ZGDV-CtxtAwr-v02.pdf.

Muhlenbrock, M., Brdiczka, O., Meunier, J.-L., and Snowdon, D., Learning to detect
user activity and availability from a variety of sensor data, in Proceedings of
the 2nd IEEE Annual Conference on Pervasive Computing and Communications
(PERCOM’04), IEEE Computer Society, 2004.

Norman, D., The Invisible Computer, MIT Press, 1998.

Peters, S. and Shrobe, H.E., Using semantic networks for knowledge representation
in an intelligent environment, in Proceedings of the 1st IEEE Annual Conference
on Pervasive Computing and Communications (PERCOM’03), 2003, IEEE Com-
puter Society, Washington, D.C., pp. 323-329.

Picard, R.W., Affective Computing, MIT Press, 1997.

Ranganathan, A. and Campbell, R.H., An infrastructure for context-awareness based on
first order logic, Personal and Ubiquitous Computing Journal, 7, 353-364, 2003.

Rhodes, B., The wearable remembrance agent: a system for augmented memory,
Proceedings of the 1st International Symposium on Wearable Computers, Cam-
bridge, MA, 1997, pp. 123-128.

12 m Context-Aware Pervasive Systems

Saha, D. and Mukherjee, A., Pervasive computing: a paradigm for the 21st century,
IEEE Computer, 25-31, 2003.

Schilit, B.N., Adams, N.I., and Want, R., Context-aware computing applications, in
Proceedings of the Workshop on Mobile Computing Systems and Applications,
December, 1994, IEEE Computer Society, pp. 85-90.

Schilit, B.N., A System Architecture for Context-Aware Mobile Computing, Ph.D. thesis,
Columbia University, 1995, available at http://seattleweb.intel-research.net/peo-
ple/schilit/schilit-thesis. pdf.

Shafer, S., Brumitt, B., and Cadi, JJ., Interaction Issues in Context-Aware Intelligent
Environments. Human Computer Interaction 16(2—4), 2001, available at
http://wwwl.ics.uci.edu/~jpd/NonTradUl/Speciallssue/shafer.pdf.

Tapia, E.M., Intille, S.S., and Larson, K., Activity recognition in the home using simple
and ubiquitous sensors, Pervasive 2004, LNCS 3001, Springer-Verlag, Germany,
2004, pp. 158-175.

Tennenhouse, D.L., Proactive computing, Communications of the ACM, 43(5), 43-50,
2000.

van der Poel, B., Context-Aware Rule-Based Data Distribution Algorithms and Methods
for Pervasive Computing. M.Sc. thesis, Delft University of Technology, August
2002.

Vidales, P. and Frank Stajano, F., The sentient car: context-aware automotive telematics,
Proceedings of First IEEE European Workshop on Location Based Services (LBS-
2002), London, also appeared as a poster at Ubicomp 2002, available at
http://www-Ice.eng.cam.ac.uk/~fms27/papers/2002-VidalesSta-car--1bs.pdf.

Wang, X.H., Gu, T., Zhang, D.Q., and Pung, H.K., Ontology based context modeling
and reasoning using OWL, in Proceedings of the Workshop on Context Modelling
and Reasoning (CoMoRea’04) at the 2nd IEEE International Conference on
Pervasive Computing and Communications, IEEE Computer Society Press, 2004.

Want, R., Pering, T., and Tennenhouse, D., Comparing autonomic and proactive
computing, IBM Systems Journal, 42(1), 2003.

Weiser, M., The computer for the twenty-first century, Scientific American, September,
1991, pp. 94-10.

Wooldridge, M., An Introduction to MultiAgent Systems, John Wiley & Sons, New York,
2002.

2

THE STRUCTURE
AND ELEMENTS OF
CONTEXT-AWARE
PERVASIVE SYSTEMS

Examples of the behavior of context-aware pervasive systems in the
previous chapter suggest that there are commonalities among these sys-
tems and that they need to be specifically designed and constructed to
achieve these behaviors. The range, diversity, and sophistication of con-
text-aware applications have continued to increase (Chen and Kotz, 2000;
Mitchell, 2002), yet one can notice reusable concepts and software archi-
tectures relevant to new applications to be developed.

This chapter first introduces analogies by which we can understand
aware systems and describes the basic elements of a context-aware per-
vasive system, from sensors and modeling to reasoning techniques. Then,
a generic abstract architecture for context-aware pervasive systems is
presented, and a brief review of selected infrastructures, middleware, and
toolkits for context-aware pervasive computing is given.

2.1 ANALOGIES

We are able to perceive the world through the five senses of touch, taste,
smell, sight, and hearing. Our brain is able to make use of whatever
impinges on our sense organs so that we experience sensation. Our
reaction to stimuli can be almost immediate, such as the knee-jerk effect,

13

14 m Context-Aware Pervasive Systems

or delayed, perhaps taking place after long and careful planning. Our
experience of the world can be viewed as either direct via the senses, or
indirect via reasoning, with the combination of knowledge that we already
have and new information gathered via the senses.

Insects have senses and are capable of reacting to stimuli. Although
they do not have the complex brain of a human being, they are able
to show interesting behaviors. For example, ants are able to show
collective behavior when finding food. Through leaving pheromone
trails for one another, ants organize themselves into groups, which
gather information from food sources efficiently; collective intelligent
behavior emerges.

Intelligent software agents are an emerging class of software systems
that are proactive, autonomous, communicative (with people and other
agents), and adaptive. These software systems are also situated in their
environment and react and respond to stimuli from their environment.
Whereas physical-world properties can be converted into data in the
computer and used by these agents, such agents typically inhabit a
software environment. Multiagent systems which involve a combination
of such agents working together provide a software paradigm for building
large, complex distributed systems. One popular use of the term agent is
as a metaphor for software that does something on behalf of another, and
the terms information agents and internet softbots (Etzioni, 1997) have
been used to describe software that search, monitor, filter, and process
information in the environment of the World Wide Web. Related to
software agents are robots that can sense the physical environment and
respond as appropriate, performing human-like behaviors, perhaps more
efficiently than humans.

Humans, insects, intelligent software agents, and robots are clearly
different categories of entities but, interestingly, one can see that, at a
high level of abstraction and from the right perspective, they share
something in common with context-aware pervasive systems — the ability
to sense and respond to stimuli, sometimes with behavior that we would
describe as intelligent. What is meant by “sensing” and the kind of
response to stimuli might differ across categories and between specific
entities within these categories. Nevertheless, we gain an insight into the
nature of these entities through this abstract view. Context-aware perva-
sive systems have their unique emphasis on identifying, understanding,
and exploiting the context of entities and on architectures that involve
pervasive computing technologies of myriad interconnected devices and
components surrounding these entities. Context-aware pervasive systems
might also be built from augmenting everyday objects and traditional
software systems with sensing and stimuli-responsiveness.

The Structure and Elements of Context-Aware Pervasive Systems ® 15

2.2 THE ELEMENTS OF A CONTEXT-AWARE
PERVASIVE SYSTEM

A context-aware pervasive system can be viewed as having three basic
functionalities: sensing, thinking (metaphorically), and acting. Systems can
vary in sophistication in each of these functionalities. Some systems might
include complex sensors but perform little reasoning before acting. Others
might utilize little sensing but perform much deliberation before acting.
Also, these functionalities can be realized in a centralized or a distributed
architecture over one or more physical devices.

2.2.1 Sensing

Sensors, biological or nonbiological, provide a means to acquire data or
information about the physical world or some aspect of the physical world.
Such knowledge can be used by a computer system to determine actions
most appropriate to the physical situation at hand. A combination of
multiple sensors can give even more information for the computer system
to reason with, providing a more comprehensive view of the physical
world. A computer program can only normally compute with the inputs
it is given and, traditionally, such inputs are provided manually by users.
Such inputs can be provided by sensors, which can be then viewed as
providing a bridge between the physical world and the virtual world of
the computer program.

What kind of information can be sensed? A large variety of sensors
have been developed, including light sensors, temperature sensors, smoke
detectors, motion sensors, and touch sensors. However, there are many
more devices that can be viewed as sensors, including microphones,
pressure gauges, and the computer clock. In Schmidt’s Ph.D. dissertation
(Schmidt, 2002), sensing technologies listed include those for light and
vision, audio, movement and acceleration, location and position, magnetic
field and orientation, proximity, touch and user interaction, temperature,
humidity and air pressure, weight, motion, gas and smell (e.g., electronic
noses), and biological signals (e.g., measuring heart rate, skin resistance,
muscle tension, blood pressure, etc.). Klein (1999) mentions radiometers,
radars, and infrared sensors.

An upcoming technology that has been receiving widespread attention
is radio frequency identification (RFID) tags or smart labels (Lahiri, 2005).
RFID tags can be read from or, in some cases, written to, using an RFID
reader with energy from a radio frequency field. RFID tags can store 64
to several thousand bits of data. One can tag everyday objects such as
documents, books, or pill bottles with RFID tags and have a reader detect
the presence or absence of one or more of these objects (Want et al.,

16 ®m Context-Aware Pervasive Systems

1999). When the RFID tag or the RFID-tagged object is within several
centimeters of the reader (or in some RFID technologies, further), the
object is detected, and when the object is moved further away, the
absence of the object is detected. In a supermarket, one could explore
RFID-tagged grocery items for automatically identifying and adding up
the price of items at checkout. A basketful of tagged items can also be
detected and analyzed.

RFID tag systems can be viewed as a sensor that provides information
about the relative physical position of these objects (i.e., between RFID
readers and tags). An interesting application of RFID tags is to construct
a model of the configuration of a number of physical parts; for example,
given a collection of tagged parts such as those in a car, one can identify
missing parts or parts in the wrong places.

Location is a widely used type of context in applications. Location-
based applications abound, from finding the nearest ATM, navigating
through unknown streets, and contextualizing Web pages to determining
which room a particular person is in within a building (Jagoe, 2002).
Depending on the positioning technology used, location information can
be represented in different ways — including coordinates in some coor-
dinate system, human-understandable labels (perhaps translated from the
coordinates) and in relative terms (e.g., is the object near some other
object?) — and in different granularities.

The granularity of location information might be within centimeters,
meters, or greater. For example, global positioning system (GPS) use
satellites (perhaps assisted by ground stations) to determine the position
of a GPS receiver within an accuracy of several meters (Andersson, 2001).
Mobile phone networks can determine the location of an individual within
a suburb or town (around 150 to 300-m accuracy) in the case of an
emergency call.

On a smaller scale, such as within an area of a radius of the several
hundreds of kilometers, serviced by wireless local area networks (WLANSs),
positioning technologies such as Ekahau! use triangulation with multiple
WLAN access points to find the location of a mobile device connected to
the WLAN to an accuracy of 1 to 2 m. The Ekahau solution enables
location information without additional hardware (given enough wireless
access points); it is a purely software solution. Bluetooth? is a short-range
networking technology (within, say, 10 m, typically) enabling devices
close enough to each other to connect with one another. What comes for
free is location information if Bluetooth is used. If a device can detect
the presence of another device, it must be within a proximity of several

1 Ekahau Web site http://www.eckahau.com.
2 The official site on Bluetooth is http://www.bluetooth.com.

The Structure and Elements of Context-Aware Pervasive Systems ® 17

meters. Hallberg and Nilsson (2002) describe a positioning system using
multiple Bluetooth access points. The recent Ubisense? sensor technology
provides location information for tagged people and objects to an accuracy
of 15 cm. Also interesting is Microsoft’s EasyLiving Project (Brumitt et al.,
2000), which uses images from video cameras to determine the position
of objects in a 3-D model. However, more people moving around can
cause frequent occlusions for the vision, which makes tracking difficult.

The variety of positioning technologies and short-range networking
technologies will surely continue to improve in their reliability and accu-
racy as time passes. An extensive review of location systems for ubiquitous
computing is Hightower and Borriello (200D).

Where can we put sensors? Clearly, the question depends on the
application and the type of sensor. Sensors can be embedded in the
environment as part of the room or within a car, worn on people, and
even placed within people. Sensors in the environment can be used to
detect activities within that environment (even human movements) or the
location of people within the environment.

Increasingly, sensors are being used in cars to automate functionality
such as detecting rain and having the wipers turn on automatically,
switching headlights on automatically when it is dark, generating warnings
as part of advanced cruise control if two cars get too near each other
while moving on the highway, and generating warnings if the system
detects that the driver is not handling the vehicle well, for example, from
drowsiness (Ayoob et al., 2003). Various forms of in-car telematics are
also used, including diagnostics and automatic reporting of wear and tear
of car parts. Not all cars have these functionalities, and some are merely
experimental at this stage, but there is an increasing trend toward such
use of sensors, leading to smart cars. Sensors can be worn on people for
health monitoring or to detect emotional states (Picard, 1997) based on
measurements of physiological factors such as heart rate and temperature.

Networks of sensors might be deployed for specific applications (Zhao
and Guibas, 2004), such as warehouse inventory management (e.g., with
the use of RFID tags), automotive applications including telematics and
systems providing traffic congestion warnings and route information,
building monitoring and control (e.g., of lighting and temperature condi-
tions), environmental monitoring (e.g., chemical hazard warning system,
tracking flood and extreme weather conditions, earthquake detection with
seismic sensors, and wildlife habitat monitoring), military battlefield intel-
ligence and security and surveillance, infrastructure protection (e.g., water
distribution and power grids), and context-aware computing (e.g., intel-
ligent homes and responsive environments). Such sensor networks, com-

3 http://www.ubisense.net/.

18 m Context-Aware Pervasive Systems

prising a number of sensors such as the motes* scattered over a particular
area, can be queried using SQL-like languages (e.g., a system called
TinyDB (Madden, 2003)) and programmed to transmit information at a
suitable rate or to sleep at certain times to conserve battery power. Sensor
nodes include augmented general-purpose PCs linked to microphones
and cameras, Berkeley motes, and smart dust. Berkeley motes can have
more than a hundred kilobytes of program memory, several kilobytes of
RAM, and several hundred kilobytes of nonvolatile storage in a range of
sizes, and use radio frequency communication (with a rate of several tens
of kilobytes per second). Smart dust® consists of tiny microelectromechan-
ical sensors (MEMS) that can detect light intensity, temperature, humidity,
and vibrations, and can transmit data wirelessly back to base stations.
Such smart dust can be small enough to be scattered over an area and
even suspended in air. They can be used in military applications to track
enemy troops or to track patients in a hospital room. Sensors can also be
programmed in the popular programming language of Java with the
introduction of Sun’s SPOT (Small Programmable Object Technology)
wireless sensor devices, which hosts a Java 2 Micro Edition (J2ME)-
compliant Java Virtual Machine (Smith et al., 2005).

Recent pervasive computing research has investigated the use of sen-
sors to recognize everyday situations that humans or devices find them-
selves in. For example, in Fogarty et al. (2005), sensors are used to predict
human interruptibility. The research showed that a microphone in the
corner of an office, the time of day, a sensor to detect if a phone is in
use, and information about mouse and keyboard activity can be used to
estimate human interruptibility. Similarly, Ho and Intille (2005) looked at
the perceived burden due to interruptions arising from mobile devices.
They identified factors that influence a person’s interruptibility at a given
time, such as the current activity of the user, the utility of the message,
the emotional state of the user, the time it takes to comprehend the
interruption and act on it, previous and future activities, social engagement
level, and social expectations. Focusing more on sensors carried or worn
by users rather than those fixed in the environment, accelerometers were
used to help recognize transitions in physical activity (e.g., from sitting
to walking, walking to sitting, sitting to standing, and standing to sitting).
The study showed that messages received during these physical activity
transitions are more positively viewed than those messages delivered at
random. In Gellersen et al. (2002), sensors (e.g., light sensors, accelero-

4 A company that markets motes has the Web site http://www.xbow.com/Products/
Wireless_Sensor_Networks.htm.

> See http://robotics.eecs.berkeley.edu/~pister/SmartDust/and http://www-bsac.eecs.
berkeley.edu/archive/users/warneke-brett/SmartDust/.

The Structure and Elements of Context-Aware Pervasive Systems ® 19

meter) are attached to a mobile phone, which can determine the context
of the phone, e.g., whether it is on the table, in the pocket, and so on.
Specialized sets of sensors can be attached to everyday objects to add
context-aware behaviors. The Smart-Its (Holmquist et al., 2004) is a stick-
on computer with a set of sensors (i.e., light, sound, pressure, acceleration,
and temperature) and the ability to communicate with other Smart-Its.
Attached to everyday objects, they could lead to new applications such
as load-sensing furniture and smart restaurants.

From the foregoing discussion, we see that sensors can be employed
in everyday settings and in specialized applications. The ubiquitous
computing wave encourages the thinking that sensors could proliferate
in the environment and be worn somewhat unobtrusively (perhaps on
normal apparel). The combination of information from different sensors
provides a window into the real world for computer systems, but there
exists a challenge in reasoning with sensor information and with the
context information acquired to build a coherent and consistent picture
of some part of the world. Also, there may be more than one way to
recognize the same situation, using a different combination of sensors.
What combination of sensors is best for acquiring context information to
recognize a particular real-world situation is a question that application
developers need to consider, where “best” might be in terms of cost,
ease of deployment, and existing infrastructure. In Schmidt’s Ph.D. dis-
sertation (Schmidt, 2002), some constraints on sensing technologies used
for context-aware devices include design and usability, energy consump-
tion, calibration, start-up time, robustness and reliability, portability, size
and weight, unobtrusiveness, social acceptance and user concern, costs,
and precision and openness.

Sensors are almost as varied as their applications. According to Klein
(1999), a sensor is a transducer (front-end hardware) that “converts the
energy entering its aperture into lower frequencies from which target and
background discrimination information is extracted in the data processor.”
One can broadly define sensor as any device, hardware or software, or
their combination, that can be used to acquire context information. This
definition of sensor is broad; devices not normally thought of as sensors
might also be used to return context information and, therefore, are sensors
under this definition, for example, the computer clock accessed using an
operating system call or a video camera. Levels of abstraction of context
information is a key idea related to our definition of sensor. A thermometer
can provide temperature readings, but an application querying a Web
service to return the current temperature can also be regarded as a sensor
from the perspective of an application. Location information can be
returned at different levels of abstraction. A “location sensor” might return
sets of coordinates, or the equivalent (and more intelligible) name of a

20 ®m Context-Aware Pervasive Systems

suburb, even in relative terms, describing the location as “where your
mother lives.” Compared to sensor technology work by Klein (1999), of
rising interest in pervasive computing is context information presented at
a higher level of abstraction. In addition, the kinds of situations that
pervasive computing highlights, as compared to earlier military applica-
tions, are those which relate to everyday living, whether at home, in the
office, or elsewhere.

It is often useful to hide (under some abstraction) how a type of
context information is acquired. For example, there may be several meth-
ods for finding the location of a person (within a given range of accuracy),
and all are equivalent in the sense that any of the methods can be used
to return the same context information. We might term any such method
the Jocation sensor, whatever the actual mechanism. An application that
uses such abstraction can work regardless of the actual underlying method
employed, or the underlying method can be changed without modifying
the application.

2.2.2 Thinking

In philosophical history, we have two schools of thought about the way
knowledge is acquired: the rationalists and the empiricists. The rationalists
attempt to gain knowledge about issues and the world (e.g., God, human-
ity, substance, space, etc.) by pure reasoning alone, whereas the empiricist
attempts to gain such knowledge via experiences as perceived through
the senses and stored in the memory. Without delving into philosophical
discussions, a mix of the two or a compromise between these two extremes
can be considered where some information is first perceived via the senses,
and then reasoning is employed to infer more knowledge. Indeed, such
a model underlies a general technique for building context-aware systems,
which involves acquiring sensor information and then reasoning with
some information to obtain knowledge; such knowledge together with
other (perhaps built-in) knowledge can then be used to infer further
knowledge, in particular, knowledge about the context or situation of
entities. A sophisticated interleaving of sensing, reasoning, and acting
might also be useful in an application.

Once data is obtained using a collection of sensors, the task is to
utilize such data and to make sense of it. Based on our broad definition
of sensors, the data can come in many different forms and can be discrete
values or continuous series of values.

Earlier work on multisensor data fusion (Hall, 2001) has been used in
fields such as robotics to estimate physical quantities such as angles and
distances in the real world. Mathematical equations relate sensor observa-
tions with known quantities and variables whose values are to be discov-

The Structure and Elements of Context-Aware Pervasive Systems ® 21

ered. Sensor fusion here involves taking a number of sensor observations
from one or more sensors and solving these equations to find values for
these variables. The focus here is on quantities and observations which
can be captured mathematically, typically, using a set of linear equations.

With hardware sensors of the kind mentioned by Klein (1999), various
techniques have been used to make sense of the sensor data for
detection, classification, and identification of objects using sensors,
including the following:

B Physical mathematical models such as Kalman filtering

B Feature-based inference techniques, such as cluster algorithms,
correlation measures, pattern recognition, neural networks, and
Dempster—Shafer and Bayesian reasoning to deal with uncertainties

B Cognitive-based models such as logical templates, knowledge
bases, and fuzzy logic

With our more abstract definition of sensors, many such techniques
have also been used to reason with context information, with pervasive
computing applications in mind.

Recent work has utilized sensors to observe patterns in real life. For
example, in a study by Clarkson (2002), data was collected using two
cameras, a microphone, and an orientation sensor worn by a user for 100
days. Scene segmentation and quantitative analysis techniques were then
applied on the data to extract patterns in daily life, demonstrating that
the life of a person can be segmented into distinct situations distinguished
by location and activity at that location and that a “person’s life is not an
ever-expanding list of unique situations” but that there is a great deal of
regularity in daily situations.

Apart from data analysis techniques, knowledge-based approaches
have been used to represent and manipulate context information acquired
from sensors. Such approaches attempt a rich, explicit model of context
to facilitate more sophisticated reasoning. Examples of rich models of
context include location models such as in Bauer et al. (2002), augmented-
world models (Nicklas and Mitschang, 2001), and activity models (e.g.,
see Bardram (2005)).

Location models can be used in conjunction with positioning technol-
ogies mentioned earlier to provide location information with more struc-
ture. According to Bauer et al. (2002), location models can be geometric
(with respect to a 2-D or 3-D coordinate system); symbolic such as
building, floor, and room numbers; and hybrid (i.e., specified using
combinations of geometric and symbolic information). One could imagine
mapping geometric coordinates into more descriptive symbolic labels.

22 ®m Context-Aware Pervasive Systems

A lattice-based symbolic model and a graph-based symbolic model are
mentioned in Bauer et al. (2002). In the lattice-based location model, the
spatial containment relationship is used to impose a partial order on
locations, reflecting a hierarchical view of spaces. In the graph-based
location model, edges labeled with distance measures connect nodes
representing locations. Where location is coupled with time, spatial-
temporal models might be devised. The actual location model used would
depend on application requirements. In Loke et al. (2006), a hierarchical
model of spaces within a shopping center (called Chadstone in Melbourne,
Australia) was used as a means to index mobile services. For example,
particular stores are located within a large departmental store, which, in
turn, is within the shopping center itself; similarly, a retail outlet is located
within a particular floor, which, in turn, is within the shopping center.

The Nexus spatial world model (Nicklas and Mitschang, 2001) aims at
creating a comprehensive spatial world model with stationary and mobile
objects, integrating virtual objects and representations of real-world objects
to form the augmented-world model. The Augmented World Modeling
Language (AWML) is used to describe objects in the augmented world,
including object geometry, coordinate systems, symbolic descriptions, and
relationships between objects. The corresponding Augmented World
Query Language (AWQL) can be used to query descriptions in AWML.

Apart from location, semantic proximity is another interesting physical
relationship that can be perceived and exploited. Antifakos and Schiele
(2002) identify three levels of semantic proximity:

1. Different locations having similar static states of the environment
(e.g., similar weather) are considered semantically close

2. Different devices that detect similar and simultaneous dynamics in
the environment (e.g., detect similar light changes and sounds)

3. Different devices attached to the same object or moving together

Two devices in the same or different locations might share such
semantic closeness.

Updating of the aforementioned world models, especially when they
mirror real-world objects that can move, can be a difficult task, and there
is an issue to manage such updates efficiently and to perhaps support
approximate answers to queries.

In Harle and Hopper (2003), a 3-D world model is created using an
ultrasonic positioning system via ray-tracing techniques, in which ultra-
sonic signals (rays) are sent from a transmitter to receivers. Such models
can be updated easily to detect appearance, disappearance, and movement
of objects. It is such technology based on Ultrawideband radio which is
used for Ubisense mentioned earlier.

The Structure and Elements of Context-Aware Pervasive Systems ® 23

Activity models have also been employed to model the notion of
activity of a person or a group as a context attribute. According to Bardram
(2005), the basis of activity-based computing is that “user activities become
first-class entities that are represented explicitly, and activities are inher-
ently collaborative, treating single-user activities as collaborative activities
that just happen to have only one participant.” The notion of activity
becomes a primary modeling concept, wherein different applications or
services can be grouped with the activity (such as “prescribing medicine
for John Smith”) as a focus.

As mentioned in Chapter 1, ontologies have also been used to provide
a comprehensive model of different types of context information which
can be used to describe situations for particular domains. Once context
information is represented, it can be reasoned about in a logical way and
different entities can understand and utilize the knowledge. Uses of such
ontologies include (Ranganathan et al., 2004) configuration management
(allowing different components to automatically discover and collaborate
with other components), semantic discovery and matching of entities,
easier interoperability between entities, and improvement of the robustness
and portability of context-aware applications. Chen et al. (2004) have
developed an ontology to represent concepts such as place, room, build-
ing, speaker, and person, which can be employed to describe context.
Other concepts such as “Meeting,” “PersonInBuilding,” and “MeetingPar-
ticipant” refer to situations. One can also write rules describing conditions
(stated in terms of the context of entities), under which someone could
be in a meeting or someone could be the speaker, and so on. A similar
ontology is given in Gu et al., (2004a) but with notable differences for
modeling the quality of context information (such as its accuracy, resolu-
tion, and freshness). Logic rules are also used to describe conditions under
which a situation would be deemed to be occurring. The ontology in
Matheus et al. (2003) employs concepts from situation theory in which
situations are viewed as collections of propositions (in the form of relations
between obijects).

Studies such as Ranganathan and Campbell (2003) have applied first-
order logic-based formalisms to represent context and situations, and rules
that map situations to required actions. Prolog is the logic programming
language used, providing executable rules for practical applications. Prolog
rules relate context information (conditions in a rule) to situations (con-
clusion in the rule). The approach in Loke (2005) introduces the additional
abstraction of situation programs for representing situations and model
sensors as special kinds of predicates.

Other context representation formalisms include contextual graphs
(Brezillon, 2003). Padovitz et al. (2004) provide a spatial view of context,
introducing the notion of context spaces. Context attributes form the axes

24 m Context-Aware Pervasive Systems

of a multidimensional space, situations are represented by regions in the
space, and the current set of sensor readings (i.e., a tuple of values for
the context attributes) are represented by a point in the space.

There is a diversity of approaches used as already seen, and there
remains an active area of research in finding the right level of abstraction
in which to represent situations and context for different applications.

One very important dimension to reasoning with context information
is dealing with uncertainty. It is not surprising that existing formalisms for
representing different kinds of uncertainty, including probability value
assignments, and degrees of set membership for vagueness have been
used; e.g., Bayesian reasoning (Gu et al., 2004b), Dempster—Shafer tech-
niques (Wu, 2003), and fuzzy logic (Byun and Cheverst, 2003).

Dey and Mankoff (2005) suggest involving the user, or mediation,
referring to the dialogue between user and system in resolving ambiguity,
which cannot be handled well even with AI techniques. Principles for
doing so include providing multiple redundant mediation techniques, use
of defaults to minimize user intervention, and retaining ambiguity until
required to be resolved.

2.2.3 Acting

Once context information has been gathered or situations recognized,
actions are taken. Effectors and the actions to be taken are application
specific, and the action itself might be to perform further sensing. Perfor-
mance is a consideration. Actions might need to be performed in time
for it to be of use to the users, and before the situation which triggered
the action changes. Another consideration is control. Ideally, the user
should retain control and be able to override actions, cancel actions, stop
actions, or reverse the effect of actions. However, only some of these are
possible, depending on the nature of the action. Agent-based systems
might also employ planning before acting, so complex actions comprising
sequences of actions are taken, perhaps interleaved with further sensing
and reasoning.

2.3 AN ABSTRACT ARCHITECTURE

Design considerations for building context-aware systems relate to the
previously mentioned three phases of sensing, thinking, and acting. One
has to consider the situations to be recognized and the context information
that would be available and can be feasibly acquired, including sensors
to be used. The appropriate reasoning technique is then chosen, ranging
from simple event-condition rules to sophisticated Al techniques. Some
data or knowledge extracted via reasoning might also be stored. Finally,

The Structure and Elements of Context-Aware Pervasive Systems ® 25

applications ! ' Acting Subsystem
storage/management] Thinking
. . : Subsystem
preprocessing/reasoning
raw data retrieval |
Sensing
Subsystem

sensors |

Figure 2.1 Abstract layered architecture for context-aware systems.

appropriate effectors, hardware, and software are employed. The distri-
bution of each of these components would depend on the application,
and all these components might be situated on the same machine or in
a distributed infrastructure. The sensing subsystem, the thinking subsystem,
and the acting subsystem need to be connected.

Several general architectures are given in the literature for context-
aware systems. Figure 2.1 shows an abstract layered architecture from
Baldauf and Dustdar (2004), labeled with subsystem divisions.

The word “sensors” at the bottom layer relates to the definition of
sensors used for raw data retrieval, given earlier. Subsequent preprocessing
or reasoning of the data is then carried out, and resulting context infor-
mation stored. Storage and management of context can be sophisticated
with support for querying, further reasoning, and updates, or much
simpler, depending on application requirements. The three subsystems of
acting, thinking, and sensing involve sensors and raw data retrieval,
preprocessing and management of context, and application-dependent
actions, respectively.

Each subsystem might be complex and decoupled from each other, or
tightly integrated into one device. Each subsystem itself might be a
collection of distributed components. An application might have its own
thinking and sensing subsystem, rather than use a shared reasoning and
sensing subsystem as part of an infrastructure (as we will see later).
Between subsystems, there might be generic interfaces (perhaps based
on the general notion of services), which allow each subsystem to interact
with another subsystem without knowing the underlying details. Such
abstraction facilitates change in one layer without affecting others. For
example, reasoning algorithms might be updated, but such reasoning
services being invoked via interface calls do not require changes on the
caller side.

26 ® Context-Aware Pervasive Systems

2.4 INFRASTRUCTURES, MIDDLEWARE, AND TOOLKITS

From an abstract viewpoint, frameworks such as SOCAM (Service-Oriented
Context-Aware Middleware), Gaia, CoBrA (Context Broker Architecture),
the Context Toolkit, the Sentient Object Model, and Hydrogen follow the
general structure as that shown earlier, but aim to separate applications
clearly from context-aware functionality.

According to Hong and Landay (2001), an infrastructure is “a well-
established, pervasive, reliable, and publicly accessible set of technologies
that acts as a foundation for other systems.” The idea is that such an
infrastructure can greatly simplify the development of context-aware appli-
cations by providing a common set of functionality, which applications
can simply utilize. Indeed, the layered architecture described earlier sug-
gests subsystems that can be abstracted into an infrastructure, whether
the sensing subsystem, the thinking subsystem, or both.

Advantages of the infrastructure approach, according to Hong and
Landay, are as follows:

B Independence from hardware, operating system, and programming
language: Standard data formats and protocols can be used to
access the services of the infrastructure, thereby allowing hetero-
geneous clients as long as they adhere to the standards.

B Improved capabilities for maintenance and evolution: Changes
including improvements and fixes to the components of the sub-
systems can be made independently of applications, just as sub-
systems can be modified independently of other subsystems.

® Sharing of sensors, processing power, and services: Resources can
be shared by multiple applications via an infrastructure, thereby
simplifying not only application development but also deployment
and facilitating interoperability among applications. Also, applica-
tions might not in themselves have the required capabilities or
computational resources for reasoning and storage of context, and
applications might not be equipped with their own sensors, and
so an infrastructure enables such applications to have context-
aware capabilities easily.

Many such context-aware frameworks have emerged in recent years,
including those mentioned earlier, as well as Henricksen and Indulska’s
(2004) framework using situation predicates in first-order logic and con-
dition-action triggers, Context Fabric,® and Gu et al.’s (2005) service-
oriented framework, each with its particular emphasis being investigated

¢ http://guir.berkeley.edu/projects/confab/.

The Structure and Elements of Context-Aware Pervasive Systems ® 27

in the project. In a survey of ubiquitous computing frameworks, Endres
et al. (2005) studied projects mainly in Europe and the United States.

One could also consider multi-infrastructure approaches when an
application might utilize the capabilities of different support infrastructures
at different times (e.g., when the application is moved from one location
to another location supported by a different infrastructure).

2.5 ISSUES OF SECURITY, PRIVACY, AND EFFICIENCY

There have been discussions concerning the privacy and security of
context information (e.g., location). Because context information such
as location can be abused if it passes to the wrong hands, such infor-
mation must be managed within secure boundaries. Hong’s Ph.D. thesis
(2005) proposed Confab, a toolkit for managing personal context infor-
mation, which helps end users make informed decisions about how and
where their personal information is utilized, including whom such infor-
mation should be exposed to and for how long. Hence, context infor-
mation about people may be gathered in a way that is unobtrusive to
users, but users might need to help manage such information or approve
of their uses.

Context information must be acquired in an efficient manner (Satya-
narayanan, 2001). Otherwise, it is possible that the world would have
changed before action could be taken based on the acquired context
information. For example, suppose we have an application that dissem-
inates advertisements over a wireless network to a user’s mobile device,
depending on the user’s location, while the user is on the move. Then,
if the user is moving fast enough (or if the system is too slow in finding
and utilizing the user’s location information), it is possible that the
advertisements are not received in time and so corresponds incorrectly
to the location that the user was last in. In the Mobile Hanging Services
system, services (in the form of mobile code) are delivered to users’
mobile devices, depending on the user’s location. Because it takes some
time for the user’s location to be obtained and for the code to be
downloaded, the user encounters an uncomfortable wait when at a new
location unless the system is adequately efficient or somehow prefetches
the code for a location before the user arrives at the location. Chapter
3 discusses this further.

2.6 SUMMARY

We have reviewed the abstract architecture and basic elements of context-
aware systems. We have also noted technologies and techniques utilized
in sensing, thinking, and acting subsystems. The following chapters will

28 ®m Context-Aware Pervasive Systems

consider architectures as developed in applications and scenarios, with
the abstract architecture as an underlying blueprint.

REFERENCES

Andersson, C., GPRS and 3G Wireless Applications: Professional Developer’s Guide,
John Wiley & Sons, U.S.A., 2001.

Antifakos, S. and Schiele, B., Beyond position awareness, Personal and Ubiquitous
Computing 6(5/6), 313-317, 2002, Springer.

Ayoob, E.M., Grace, R., and Steinfeld, A., A user-centered drowsy-driver detection and
warning system, Proceedings of the Conference on Designing for User Experi-
ences, ACM Press, 2003, pp. 1-4.

Bardram, J.E., Activity-based computing: support for mobility and collaboration in
ubiquitous computing, Personal and Ubiquitous Computing 9, 312-322, 2005,
Springer.

Bauer, M., Becker, C., and Rothermel, K., Location models from the perspective of
context-aware applications and mobile ad hoc networks, Personal and Ubiq-
uitous Computing 6(5), 322-328, December, 2002, Springer.

Baldauf, M. and Dustdar, S., A Survey on Context-Aware Systems. Technical Report
Number TUV-1841-2004-24, November 2004, available at http://www.infosys.
tuwien.ac.at/Staff/sd/papers/TUV-1841-2004-24.pdf.

Becker, C. and Durr, F., On location models for ubiquitous computing, Personal and
Ubiquitous Computing 9, 20-31, 2005, Springer.

Brezillon, P., Representation of procedures and practices in contextual graphs, The
Knowledge Engineering Review 18(2), 147-174, 2003, Cambridge University
Press.

Brumitt, B., Meyers, B., Krumm, J., Kern, A., and Shafer, S.A., Easyliving: technologies
for intelligent environments, Proceedings of HUC, 2000, pp. 12-29.

Byun, H.E. and Cheverst, K., Supporting proactive “intelligent” behaviour: the problem
of uncertainty, Proceedings of the Workshop on User Modelling for Ubiquitous
Computing, at the 9th International Conference on User Modelling, Pittsburg,
PA, June 2003, available at http://www.di.uniba.it/~ubium03/byun-8.pdf.

Chen, G. and Kotz, D., A Survey of Context-Aware Mobile Computing Research,
Technical Report TR2000-381, Department of Computer Science, Dartmouth
College, November 2000.

Chen, H., Finin, T., and Joshi, A., An ontology for context-aware pervasive computing
environments, 7he Knowledge Engineering Review (special issue on Ontologies
Jor Distributed Systems) 18(3), 197-207, 2004.

Clarkson, B.P., Life Patterns: Structure from Wearable Sensors, Ph.D. thesis, Massachu-
setts Institute of Technology, 2002.

Dey, A. and Mankoff, J., Designing mediation for context-aware applications, ACM
Transactions on Computer Human Interaction (TOCHI), 12(1), 53-80, March
2005.

Endres, C., Butz, A., and MacWilliams, A., A survey of software infrastructures and
frameworks for ubiquitous computing, Mobile Information Systems Journal
1(1), January—March 2005, 10S Press.

Etzioni, O., Moving up the information food chain: Deploying softbots on the World
Wide Web, AI Magazine 18(2), 1997, pp. 11-18.

The Structure and Elements of Context-Aware Pervasive Systems ® 29

Fogarty, J., Hudson, S.E, Atkeson, C.G., Avrahami, D., Forlizzi, J., Kiesler, S., Lee, J.C.,
and Yang, J., Predicting human interruptibility with sensors, ACM Transactions
on Computer-Human Interaction (TOCHID) 12(1), 119-146, March 2005.

Gellersen, H.-W., Schmidt, A., and Beigl, M., Multi-sensor context-awareness in mobile
devices and smart artifacts, Mobile Networks and Applications (MONET), 7(5),
October 2002, pp. 341-351, Kluwer Academic Publishers.

Gu, T., Wang, X.H., Pung, H.K., and Zhang, D.Q., An Ontology-based Context Model
in Intelligent Environments. Proceedings of Communication Networks and
Distributed Systems Modeling and Simulation Conference (CNDS 2004), pp.
270-275, San Diego, CA, January 2004a.

Gu, T., Pung, HK., and Zhang, D.Q., A Bayesian approach for dealing with uncertain
contexts, Proceedings of the Second International Conference on Pervasive
Computing (Pervasive 2004), in the book Advances in Pervasive Computing
published by the Austrian Computer Society, Vol. 176, Vienna, Austria, April
2004b.

Gu, T., Pung, HK., and Zhang, D.Q., A service-oriented middleware for building
context-aware services, Journal of Network and Computer Applications (JNCA)
28(1), 1-18, January 2005, Elsevier.

Hall, D., Handbook of Multisensor Data Fusion, CRC Press, Boca Raton, FL, 2001.

Hallberg, J. and Nilsson, M., Positioning with Bluetooth, IrDA and RFID, Master’s thesis,
2002, available at http://www.cdt.luth.se/~amaino/papers/Positioning_
with_Bluetooth_IrDA_and_RFID.pdf.

Harle, RK. and Hopper, A., Building world models by ray-tracing within ceiling-
mounted positioning systems, Proceedings of Ubicomp, 2003, Springer-Verlag,
Germany, pp. 1-17.

Henricksen, K. and Indulska, J., A software engineering framework for context-aware
pervasive computing, Proceedings of the 2nd IEEE International Conference
on Pervasive Computing and Communications (PerCom), March 2004, IEEE
Computer Society, U.S.A., pp. 77-86.

Hightower, J. and Borriello, G., Location systems for ubiquitous computing, [EEE
Computer 34(8), 57-66, 2001, IEEE Computer Society.

Ho, J. and Intille, S., Using context-aware computing to reduce the perceived burden
of interruptions from mobile devices, Proceedings of CHI 2005 Connect: Con-
ference on Human Factors in Computing Systems, ACM Press, 2005, pp.
909-918.

Holmaquist, L.E., Gellersen, H.-W., Kortuem, G., Schmidt, A., Strohbach, M., Antifakos,
S., Michahelles, F., Schiele, B., Beigl, M., and Maze, R., Building intelligent
environments with smart-its, IEEE Computer Graphics and Applications, 24(1),
56-64, 2004.

Hong, J.I., An Architecture for Privacy-Sensitive Ubiquitous Computing, Unpublished
Ph.D. thesis, University of California at Berkeley, Computer Science Division,
Berkeley, 2005.

Hong, J.I. and Landay, J.A., An infrastructure approach to context-aware computing,
Human-Computer Interaction 16(2, 3, 4), 287-303, 2001.

Jagoe, A., Mobile Location Services: The Definitive Guide, Pearson Education, U.S.A.,
2002.

Klein, L.A., Sensor and Data Fusion Concepts and Applications, 2nd ed., Society of
Photo-Optical Instrumentation Engineers (SPIE), U.S.A., 1999.

30 m Context-Aware Pervasive Systems

Loke, S.W., Representing and reasoning with situations for context-aware pervasive
computing: a logic programming perspective, Knowledge Engineering Review,
19(3), 213-233, 2005, Cambridge University Press.

Loke, S.W., Tam, O.K., Krishnaswamy, S., and Cuce, S., Bringing order to mobile
services: a weighted approach for prioritizing ambient services, submitted to
the Journal of Pervasive Computing and Communications, 2006.

Lahiri, S., RFID Sourcebook, IBM Press, U.S.A., 2005.

Madden, S., The Design and Evaluation of a Query Processing Architecture for Sensor
Networks, UC Berkeley, Ph.D. thesis, 2003.

Matheus, C., Kokar, M., and Baclawski, K.., A core ontology for situation awareness,
in Proceedings of FUSION, July 2003, pp. 545-552, available at http://vistol-
ogy.com/papers/FUSIONO3.pdf.

Mitchell, K., A Survey of Context-Aware Computing, Report, Lancaster University, March
2002, available at http://www.comp.lancs.ac.uk/~km/papers/ContextAware-
nessSurvey.pdf.

Nicklas, D. and Mitschang, B., The NEXUS augmented world model: an extensible
approach for mobile, spatially-aware applications, Proceedings of the 7th Inter-
national Conference on Object-Oriented Information Systems, Calgary, 2001.

Padovitz, A., Loke, S.W., and Zaslavsky, A., Towards a theory of context spaces,
Proceedings of the Workshop on Context Modelling and Reasoning (COMOREA),
PerCom Workshops, IEEE Computer Society, U.S.A., 2004, pp. 38—42.

Picard, R., Affective Computing, MIT Press, 1997.

Ranganathan, A. and Campbell, R.H., An infrastructure for context-awareness based
on first order logic, Personal and Ubiquitous Computing Journal 7, 353-304,
2003.

Ranganathan, A., McGrath, R.E., Campbell, R.H., and Mickunas, M.D., Use of Ontologies
in a Pervasive Computing Environment, The Knowledge Engineering Review
18(3), 209-220, 2004, Cambridge University Press.

Satyanarayanan, M., Pervasive computing: vision and challenges, IEEE Personal Com-
munications 8, 10-17, August 2001.

Schmidt, A., Ubiquitous Computing — Computing in Context, Ph.D. thesis, Computing
Department, Lancaster University, 2002.

Smith, R.B., Cifuentes, C., and Simon, D. Enabling Java for Small Wireless Devices
with Squawk and SpotWorld, Proceedings of the Workshop on Building Software
Jfor Pervasive Computing at OOPSLA, 2005, available at http://www.ics.uci.edu/
~lopes/bspc05/papers/smith.pdf.

Want, R., Fishkin, K.P., Gujar, A., and Harrison, B.L., Bridging physical and virtual
worlds with electronic tags, Proceedings of the Conference on Computer Human
Interaction (CHID), 1999, pp. 370-377.

Wu, H., Sensor Data Fusion for Context-Aware Computing Using Dempster-Shafer
Theory, Ph.D. thesis, The Robotics Institute, Carnegie Mellon University, 2003.

Zhao, F. and Guibas, L., Wireless Sensor Networks: An Information Processing Approach,
Morgan Kaufmann, U.S.A., 2004.

3

CONTEXT-AWARE
MOBILE SERVICES

Service-oriented computing has the notion of services as its central oper-
ative idea, made popular by developments in Web service technologies.
Computationally, services are an abstraction of a unit of functionality,
whereas to end users it conveys the idea of applications that can be called
upon as needed to perform, if not aid, users’ tasks. Mobile computing
implies the tendency for users to change their situation often (at least
their location, for instance), and such changes can be exploited by the
system to proactively tailor services or to present services according to
the user’s current situation (e.g., location-based services and location-
based E-commerce applications); i.e., the services are said to be effectively
context aware or they behave in a way that demonstrates awareness of
the user’s current context.

This chapter first briefly reviews the development of mobile services,
the context useful for mobile services, and some examples of applications.
Then, the chapter puts forth ideas building up on mobile service infra-
structure, including those of ambient services, mobile electronic commu-
nities (building on location-based services), and technical enhancements
related to advanced delivery of mobile services (e.g., use of mobile code,
and multiagent systems for location-based auctions). Many of these ideas
are exploratory, aimed at suggesting possibilities with context-aware
mobile services.

3.1 THE RISE OF MOBILE SERVICES

From E-services available over the Internet supported by engines such
as E-speak (Karp, 2003), integration with Web philosophy yields the

31

32 m Context-Aware Pervasive Systems

notion of Web services. Singh and Huhns (2005) enumerated a list of
definitions for Web service and arrived at “functionality that can be
engaged over the Web.” Engagement can mean invocation of a service
as in invocation of a method in the programmatic sense to more sophis-
ticated interactions over time. Web service comprises technology (XML-
based formats and protocols) for describing such functionality and for
transferring data to and from such services. Web services provide a way
for a company to expose business functionality over the Internet and
allow services sharing within the intranet of a business, with extranets,
or between business partners.

With the development of the mobile Internet or mobile Web, such
services can then be engaged over wireless networking technologies
anywhere, anytime as long as the infrastructure supports the services.
Wireless Application Protocol (Singhal et al., 2001) standards and appli-
cations were developed to support lightweight content that could fit within
small resource-constrained devices and be controlled with the phone
keypad. Such content, even if more efficiently processed with less memory
and computational power, was poorer in multimedia functionality and
expressiveness compared to the desktop Web. With the recent develop-
ment of wide area high bandwidth wireless networking technologies such
as 3G and 4G, multimedia content could be delivered to smartphones at
high speeds, even allowing real-time videos of phone users to be
exchanged. Such technologies and newer handsets enable multimedia
services to be delivered to users anywhere (provided there is network
coverage), anytime.

Location-based E-services became a popular idea for M-commerce and
L-commerce (L for location). Examples of such services include finding
the nearest ATM machine and making reservations with restaurants in the
vicinity. Such services come in the form of queries whose results depend
on the current location of the device from which the query is issued.
Positioning technologies employed include GPS-based technologies. Web
services accessed from mobile devices such as smartphones and personal
digital assistants (PDAs) can be adapted or tailored according to such
context information of the devices (and the user). Besides location, other
information about the user or device can be used to adapt services or
content delivered to services. Content adaptation becomes a key idea in
ensuring that a mobile device receives information in a form it can
manage,! appropriate to the device’s available memory, computational
power, and device interface capabilities. Other ways in which context
might be used includes tailoring advertisements sent to mobile devices

1 See IBM’s WebSphere Everyplace at http://www-300.ibm.com/software/integration/
wmgqe/.

Context-Aware Mobile Services ® 33

according to what is near the user (or the device the user is carrying),?
navigational services, object finding, localized Internet search, and loca-
tion-based auctions, as we will discuss later. Context changes can be used
as a means to trigger changes of behavior of services.

3.2 CONTEXT FOR MOBILE DEVICE USERS

What information might be context in this category of applications? With
mobility, location is a key context that changes often. The granularity
of location becomes important depending on the application. Location
can be viewed as a point in space or an area with comprehensible
geographic boundary. Time and current activity of the user carrying the
device, proximity to other objects and people, intentions of users, and
data from sensors in the environment might also be exploited in appli-
cations. In Stolze and Strobel (2001), shopping roles such as “father
shopping for a birthday present for his daughter” is used as context to
select appropriate services for display to a shopper or to adapt the
behavior of particular services.

3.3 LOCATION-BASED SERVICES

Applications can be indoor, outdoor, or supported both within buildings
and outdoors. Important considerations are the positioning technology
available and the network coverage, as well as device support for net-
working technologies. For example, it is possible for indoor services to
be supported for a mobile device by a short-range wireless networking
technology such as Bluetooth or infrared beacons, and then on moving
indoors to outdoors, the device switches automatically to an outdoor
networking technology and a corresponding outdoor positioning technol-
ogy (e.g., based on wireless local area network [WLAN] or global posi-
tioning system [GPS], and accesses services via this network.

We can consider outdoor location-based applications, in which the
position of a device (and its carrier) is determined by technologies such
as GPS and cellular networks. Examples of such applications include
navigation and real-time traffic, emergency services, travel guides, mobile
yellow pages, location-based marketing, asset (e.g., vehicle fleet or pack-
ages) tracking, and theft control. The positioning technology determines
the location of the object as found with respect to a digital map. Jagoe
(2002) gives a comprehensive infrastructure for location-based services,
including components for positioning, payment for services, authentica-

2 As an example, see the European project on location-based advertising at
http://www.e-lba.com/.

34 m Context-Aware Pervasive Systems

tion, and billing logic. The maps used depend on the areas over which
locations are to be considered, and granularity of location information
depends on the application (e.g., cells in the case of cellular networks).

3.4 AMBIENT SERVICES

Related to location as context for adapting services, it is possible to
consider ambients, i.e., geographic boundaries of areas, as one type of
such contextual information. By ambient services, we have in view services
that are related to the surrounding physical environment of the user and
are locally useful (i.e., they may not be relevant or useful beyond the
boundaries of an area around the user). Compared to location-based
services in general, we use the term ambient services to emphasize the
association of services with logical areas with boundaries, so that it is
possible to talk about these areas overlapping or one area being contained
within another, and the user crossing such boundaries.

Such ambient services are naturally suggested by short-range wireless
networking technologies (Leeper, 2001), such as WLANs (e.g., the IEEE
802.11b [or Wi-Fi] LANs) with access points having a limited range of
roughly 100 m) and wireless personal area networks (WPANs) (e.g.,
Bluetooth [http://www.bluetooth.com] with a limited range of roughly 10
m). WLANs (or “hot-spots”) are becoming ubiquitous and are starting to
appear in homes, offices, and public places such as shopping complexes,
airports, hotels, parks, and restaurants.> The Bryant Park Hotel in New
York lets its staff service guests using information provided via wirelessly
networked devices.* Starbucks cafe is providing WLAN services to cus-
tomers. Also, Bluetooth public access points are emerging. Ericsson’s
Bluetooth Local Infotainment Point (BlipNet)® technology provides access
points to information for Bluetooth-enabled PDAs and cell phones, and
has undergone trials in public areas such as cafes, railways, and gas
stations. The vision of the ubiquitous short-range networks is also artic-
ulated in the Point Servers concept.®

More recent efforts will enable roaming across different WLANs and
Bluetooth networks, and even WLANs and Global System for Mobile
Communications (GSM) networks.” For example, one could connect to a
WLAN within range of its access point, hand off to a lower speed wireless
telecommunications service once out of range, and then reconnect to

3 A list of 802.11 access points can be found at http://www.80211hotspots.com/.
See http://www.mobileinfo.com/News_2001/Issue34/Symbol_Bryant.htm.

http://www blipsystems.com/.

http://www.pointservers.org/.

See http://www.cisco.com/en/US/products/ps5940/products_white_paper0900aecd
80374a00.shtml.

P - NV S

Context-Aware Mobile Services ® 35

another access point in a different WLAN. An individual can move out of
one cafe (and so out of that cafe’s network) and into another cafe (and
so into this cafe’s network) while still in some other network. It is also
possible for a user to be within the range of and connected to multiple
networks at the same time, to some networks containing others, or con-
tained in or overlapping with others, provided the user’s device has that
capability or the different devices of the user (themselves interconnected
by a WPAN) are each connected to a different network. For example, one
could be in a cafe in a shopping complex in some town and so could
then be within and connected to three networks at the same time: the
café’s WLAN, the shopping complex’s WLAN, and the town’s network (and,
perhaps, even to a fourth one — a wide area mobile Internet).

What granularity of boundaries or logical areas to use for ambient
services would depend on the application. A logical area will have certain
ambient services associated with it, which might or might not also be
associated with ambient services in another logical area. Figure 3.1 shows
the boundaries for services, with logical areas P, Q, R, and S (Loke and
Zaslavsky, 2004).

In Figure 3.1, we assume that a service p’s boundary is P; i.e., only
while a user U is in P is the service p active for U. Similarly, Q is the
boundary for a service g, R is the boundary for a service r, and S is the
boundary for a service s. The dark spot denotes a person located within
the service boundaries P, Q, and R and therefore able to utilize services
P, q, and 1, but not able to utilize service s, not being within the boundary
S of s. Such service boundaries may be located within another, for example,
Q within P. Q could represent a service to obtain information about a

P

w

Figure 3.1 Boundaries P, Q, R, and S for services.

36 m Context-Aware Pervasive Systems

particular museum exhibit, and P might be the boundary for the services
of the museum, and only when the user is 1 m away from the exhibit is
the user within Q. The developer of a service can use such service
boundaries to demarcate geographically the area of relevance and utility
of a service. Such boundaries also provide a filtering criteria for the user
who then needs only to be informed of services that he or she is currently
within the boundaries of. We admit that not all services will have a
meaningful geographic area of relevance but assume that ambient services
by definition do. The notion of service boundaries not only conveys
information about the application characteristics of the services themselves
but can also be used to capture the administrative domains of services;
service providers can structure their services into such logical areas.

We can have services with relatively fine scope such as an office room,
a lecture theatre, or a building floor. Logical areas of relevance for services
of much larger granularity can be considered on such scale as a shopping
mall, a street, a suburb, or a town, and relevance areas of smaller
granularity can be considered, such as a space 0.5 m from a museum
exhibit, or a telephone booth. A set of services is associated with each
such logical area (e.g., specific library services while within a library,
information services on specific museum exhibits of a museum hall, and
accessing particular printers when in some part of an office). When an
individual is within a logical area, the services associated with the area
can be invoked by the user.

Because of geographic overlaps and nesting, a user can be in several
such logical areas at the same time, and as the user enters one or more
logical areas, moving beyond the boundaries of some services and moving
into others, his or her ambient services can be automatically discovered
and enabled, and updated on the user’s device. When a user is in several
logical areas at the same time, an important issue is how to decide what
combination of services should be enabled for a user at a given time.
This combination of services may take a number of different forms. For
example, the same or similar services may be combined, or services in
one area may have precedence over similar services in another area.

More precisely, the scope D of a set of services for a user U is the
geographic area in which the services §” for the user U is available such
that S” S, where S is the set of all the services available in D. So, for
example, in our model, let Di and Dj be two logical areas where i # j,
and let Sa and Sb be two sets of services where a #b. If Sa and Sb are
the sets of services associated with areas Di and Dj, respectively, and if
the user is within Di and Dy at this time, then a simple case is that the
ambient services available to the user is Sa U Sb (set union of Sa and Sb).
So, in this example, for a given user U and areas Di and Dj, a set of
services Sa U Sb comprises all the ambient services of the user U (assuming

Context-Aware Mobile Services m 37

Di and Dj are mutually exclusive). But this might not be the case; for
example, we might have a case in which the user is within Di and Dy,
but he or she is only allowed to use the services of Di. This may be due
to the constraints imposed by the service provider of the area or to the
user’'s own preference of what services he or she wants enabled at a
particular area. Thus, the services available to a user at a particular area
are not all the services associated with the areas containing that area but,
in some cases, only a combination of some of the services associated with
the areas.

The concepts discussed are applicable to both outdoor and indoor
logical areas. We now consider natural boundaries in shopping centers
and office buildings to illustrate indoor logical areas.

3.4.1 PointRock Example

We consider a hypothetical shopping center called PointRock, located in
Melbourne, Australia. PointRock Shopping Centre is a complex shopping
mall that comprises many stores, shops, and services, such as ANK Bank
and post offices. Bazar is a store with many smaller retailers inside — for
example, Jesprit-branded clothing. Once users enter a predefined logical
area, the associated services will be available to users for selection. For
example, consider Sally currently shopping in Jesprit; she is located in
the predefined logical area: Jesprit logical area. Thus, all the ambient
services associated with the Jesprit logical area will be available to Sally.
Such services could, for example, include an informational service about
Jesprit clothing or a price check facility. In the same way in which
information about a museum exhibit can be beamed to a visitor’s mobile
device (e.g., via an infrared or Bluetooth connection or an RFID reader
in the device, the museum object being RFID-tagged), information about
items of Jesprit clothing can be acquired.

Figure 3.2 shows a simplified floor plan of a shopping center, inspired
by an actual shopping center in Melbourne, Chadstone.®? We observe the
following logical areas: James Jones, Tarju, and Bazar are three depart-
mental stores, and Shop-Low and Toles are two supermarkets. ANK Bank’s
logical area is shown; Jesprit is a section within Bazar for display and
retail of Jesprit-branded clothing; the boxes indicate subdivisions of the
space for retail shops. One could develop ambient services pertinent to
each such logical area.

There could be services whose scope is the entire PointRock (useful
and accessible while the user is in PointRock) or services useful only while
in, say, James Jones or Bazar. There could also be services specific to the

8 http://www.chadstoneshopping.com.au.

38 m Context-Aware Pervasive Systems

James | | | | |ANK
Jones

Tarju

Retail
Shops

Figure 3.2 A sketch of logical areas in a shopping mall.

logical area of “supermarkets” (which is a combination of the areas of Shop-
Low and Toles). For example, a service to guide the user to the nearest
restaurant, café, or restroom can be PointRock-wide, whereas a service to
guide a user to the specific shelf on which a type of clothing can be found
might only be applicable in Bazar. Similarly, a service to guide the user to
the particular shelf on which a certain type of can food can be found might
have the scope of supermarkets. There could be a parking lot search service
while users, in cars, are in the parking space of PointRock.

3.4.2 Future E-Martketplaces

As noted by Loke (2003), we can envision E-marketplaces as counterparts
of physical marketplaces; we have the scenario of one in a physical
marketplace down the street (e.g., a shopping mall) able to access from
our devices not only some global E-marketplace or store (e.g., Ama-
zon.com) but also an E-marketplace that is locally relevant and enhances
the experience in the physical marketplace itself. Such location-based E-
marketplaces can transcend geographic features spanning not necessarily
continents but neighborhoods, streets, buildings, or shops. We might have
a virtual sports shopping mall, which is an E-marketplace representing all
sports shops within a 2-km radius, or a virtual designer-jeans shopping
mall representing shops selling such items along a famous street. Hence,
conceptually, we have a superimposing of E-marketplaces and physical
marketplaces, with added value to vendors and potential customers. For
example, there is opportunity to extend the boundaries of stores beyond

Context-Aware Mobile Services ® 39

the physical store space — proximity advertising can act as a kind of
“tractor beam” to attract prospective customers to visit the shop (Newell
and Newell, 2001); people can turn their “sale radar” on (opting On) to
be a prime candidate for location-based targeted marketing communica-
tions, reply to ads to preregister or hold an item or preorder for instant
consumption, or get into a “virtual red carpet” shopping tour. This means
that the “conceptual size” of shops increases, and there can be multiple
“conceptual organization” of shops. There is also opportunity for any-
time—anywhere B2B collaboration; for example, several stores at nearby
locations can combine resources to create instant packages to lure buyers,
or several businesses can provide a package for a day event (e.g., a
football day in some area). On the customer’s side, the E-marketplace can
provide a facility for customers to establish coalitions (perhaps on the fly)
based on current locations (i.e., proximity) and common interests.

Using location technology in mobile commerce (M-commerce) is not
a new idea. We have already mentioned some examples, including
location-based advertising, in which advertising is targeted based on not
only user profiles but also the user’s location and time. Other applications
are geoinformation and route finding (e.g., Where am I now? Where is
the nearest ATM? Where is my friend now?) (e.g., Tewari et al., 2000),
and intelligent shopping assistance that provide suggestions, are sensitive
to the user’s location (e.g., Fano, 1998), and provide services triggered
by proximity (Troel, 2001). Further examples of work to support shoppers
anytime anywhere, some using intelligent software agents, include
Impulse,” MyGROCER! (Kourouthanasis et al., 2002), location-based
reverse auctions (described later), mobile online auctions (Wagner et al.,
2002), E-CWE (Maamar et al., 2001), CRUMPET (Poslad et al., 2001), GPS-
based location-based services (Jagoe, 2003), Web services in mobile
E-commerce (Pilioura et al., 2003), E-parking (Attane and Papi, 2002),
wireless advertising (Kolmel and Alexakis, 2002), ad hoc coalition for-
mation, and others as reviewed by Varshney and Vetter (2002). Hence,
there is a huge range of services, some of which may be useful for
different tasks and at different locations, resulting in the need to organize
such services for the user.

In marketplaces, as first noted by Loke and Zaslavsky (2004), ambient
services may be classified not only according to geographic boundaries
of relevance but also by their suitability to the task within the user’s
shopping process, when the shopping process model is based on the
stages of consumer-buying behavior (He et al., 2003). The context of the
user can be extended to include not only current location but also the

° http://agents.media.mit.edu/projects/impulse/.
10 http://www.eltrun.aueb.gr/mygrocer/.

40 m Context-Aware Pervasive Systems

stage in which the user is within the Consumer-Buying Behavior (CBB)
model. We can use the seven-staged CBB model as additional contextual
information to classify ambient services, though some services might span
several stages. The seven stages, which typically proceed sequentially, are
described in the following text:

Need identification: In this stage, the consumer identifies a need for a
product or service. Typically, this need can be stimulated by adver-
tisements, natural means (via conversations with other people), some
user-employed suggestion services, and peer recommendations. In
the wireless environment, location-based advertising based on prox-
imity to shops will fit into this stage, together with proximity-based
tractor beam offers (as mentioned earlier). Otherwise, the need may
simply come from the consumer himself or herself (e.g., the con-
sumer feels thirsty or hungry).

Product brokering: In this stage, the consumer determines what to buy
to satisfy the identified need. Based on the consumer’s criteria, a set
of desirable products is created as a result of this stage, with infor-
mation for evaluating product alternatives. In the wireless environ-
ment, various kinds of product comparison services may be invoked,
or, if permitted, the Web can be accessed for information required
to make an informed decision. Given a user’s criteria (including
current location), services can be created to provide product recom-
mendations to the user from shops in the neighborhood. Friends in
the neighborhood may also be contacted to offer information about
purchase suggestions. The consumer may also send queries about
products available to shops in the neighborhood, for example, a
virtual designer-jeans shopping mall formed by a group of shops in
the consumer’s surroundings. If such a service is available, the
consumer may be able to point to the product with the device, ask
questions about its price, make, etc., and look it up in his or her
cupboard to see if there are other matching products, as in the case
of clothing (e.g., Gershman, 1999). The consumer may also be able
to show the product to friends via the device’s built-in camera.

Buyer coalition formation: Coalitions among buyers might be formed
on the fly to provide greater bargaining ability, but this will require
a service for buyers to communicate with each other about their
buying intentions.

Merchant brokering: In this stage, the consumer determines who to
buy the product or service from. This stage involves merchant or
vendor evaluation rather than product evaluation. It is possible to
utilize factors such as proximity of consumer to the shop, as well
as delivery options — the user might decide to pick the item up

Context-Aware Mobile Services ® 41

himself or herself. Other factors taken into consideration, even in
the nonmobile case, are price, reputation of merchant, and, perhaps,
long-standing relationships.

Negotiation: In this stage, the consumer discusses with the chosen
merchants to reach an agreement on the terms and conditions of
the transaction. Such negotiation can occur one to one or involve
multiple parties. For example, auctions may be carried out between
multiple consumers for a product that a merchant is selling, or
reverse auctions may be carried out between a consumer and many
selected merchants.

Purchase and delivery: In this stage, the consumer selects among
payment options as acceptable to the merchant and makes payment.
The delivery of the product is then performed.

Product service and evaluation: In this stage, the consumer provides
feedback on the product or service to the merchant or product
creators. Such feedback might be immediate or after a period of time.

The consumer can notify a system of the stage he or she is currently
at and, in this way, enable the system to suggest services relevant to the
specified stage. For example, if consumer Jane is in the need identification
phase, she can opt to receive wireless advertising about shops in the
neighborhood or, say, in the shopping mall, as well as suggestions from
friends in the neighborhood, if any, about what Jane might be interested
in. Suppose Jane identifies a need. Then, in the product brokering stage,
she might utilize search services to find out where she can find particular
items nearby or send a query to friends who might recommend a suitable
product or identify the neighborhood shop in which they have seen it.
Jane might also use an information service to find information (e.g., price,
availability, etc.) of alternative products sold in shops not more than
several hundred meters away. Once she has narrowed her options down
to one or several possibilities, Jane might then look for a suitable vendor
(f not found in the previous stage as answers to product comparison
queries) and compare alternatives. Negotiation or bargaining for the prod-
uct from a chosen vendor might then proceed either via direct human
communication or via technology (e.g., Jane makes a call, or her agent
automatically negotiates on her behalf while she does something else). If
Jane does not know where the vendor is located, she might utilize a
navigation service that would lead her not only to the vendor but all the
way to the product shelf. Note that Jane is free to change her mind and
may decide not to purchase a product or discover that the need is no
longer important. Subsequently, Jane organizes to pay for the product or
provide a down payment either at the vendor’s location or via technology
without having to walk to the vendor’s premises, and to arrange for pickup.

42 m Context-Aware Pervasive Systems

There will be services that incorporate several stages of the aforemen-
tioned sequence. For example, Jane might receive an advertisement con-
cerning a type of Chinese food at a particular restaurant. She might then
not have to consider other restaurants that sell the same or alternative
food. She decides to take up the offer and walks to the restaurant using
the navigation services that came with the advertisement. Another example
is the proximity-based reverse auctions, in which the user issues a query
such as “Who within a radius of 100 m from me will sell me X for price
P?” The system initiates a reverse auction among vendors within the
specified area to answer this query; thus, in the course of handling this
query, the merchant is determined and the price negotiated. We will later
develop this idea of the location-based reverse auctions further.

A consumer might not be shopping for one but for several services or
products. For example, a consumer leaves the house for a shopping mall
and employs parking services to negotiate and rent parking space on
arrival. Thereafter, the consumer reenters the aforementioned stages but
for a different product (e.g., tennis shoes). In addition, the consumer might
be at different stages concurrently for a number of products or services.

A consumer might become a provider (or when charging is used, a
vendor) of a product or service. For example, an individual having some
free time can begin to provide information services (e.g., navigational
guidance, opinions, or help in product searches) in the context of a virtual
community formed by mobile device users in a neighborhood (e.g., Loke,
2002). Moreover, an individual can also sell his or her digital screen estate
to vendors who are willing to pay (in terms of monetary units or incentives)
to have their advertisements on the user’s device (Loke et al., 2004).

As mentioned earlier, we note that further refinement of the consumer’s
shopping intentions can be made if the consumer also provides the
shopping role as described by Stolze and Strobel (2001). Examples of
such roles include “father of a teenage girl,” “son for mum’s birthday,”
etc. According to this role, appropriate services can be selected to help
the consumer. Such roles help in the need identification stage of the CBB
model by conveying hints about the reason for shopping.

The three dimensions described earlier form a service classification
space as illustrated visually in Figure 3.3. There are services that extend
over different portions of the space when they are relevant in multiple
stages, multiple locations, and multiple roles.

3.4.3 Office Building Example

Another example of indoor logical areas and ambient services within an
office building, from Loke et al. (2005), is illustrated as a floor plan in
Figure 3.4. A typical office building has rooms and various subdivisions.

Context-Aware Mobile Services

m 43

location

A

' services spanning the

. service classification space

shopping role

shopping stage

Figure 3.3 The three dimensions for organizing services. The solids represent
services within the service classification space.

03
£ifea
1%

| son || =02
i =
k | 123

L5 2 05T Wealira
e

E % [T - C.506 Sens Oifies[Aty 5
20 oo | uee hum s hsm bems b oom e G638 Arkady s iy
12 i e || Choe | foiee || oe fTof e | Cfke Cifice Cfica
| PR T R V)] 10 188 L— 13 e 34
P’ ‘o | - _‘
0002 000 a 5000 10000 15200 20000 25000
JUUUUL L
Office Logical Area
Library Logical Area

[[] Floor Logical Area

Figure 3.4 Floor of a building in a university campus.

44 m Context-Aware Pervasive Systems

Services can be structured according to various functional subdivisions
within a floor of a building. Certain library services, such as navigating
to the bookshelf on which a required book can be found! and interacting
with the library management, can be offered to users with a connected
mobile device within the library area. Services offered to users with a
mobile device related to office space might include printing documents
(from the mobile device to the nearest printer), navigating to a person’s
office, leaving electronic notes for someone not in the office, accessing
various devices in a room via a mobile device (used as a universal remote
controller, but while the user is in the room), accessing wireless Internet
or Voice-over-IP communication services (e.g., via the WLAN).

3.4.4 A Software Architecture for Ambient Services

To illustrate a possible implementation of ambient services, we outline
the architecture and key components of a system, first introduced as the
prototype developed in Loke et al. (2005). Figure 3.5 depicts the archi-
tecture of a system for proactive discovery and update of ambient services.
The system consists of four major components: the Ekahau Positioning
Engine (EPE),!? the Service Calculation Engine (SCE), Mobile Client Appli-
cation, and Web Services.

EPE 2.0 is the positioning server that keeps track of mobile users in
a WLAN. It detects the mobile users who enter a particular geographic
location of each user. The user’s current location information is then sent
to the Service Calculation Engine (SCE) periodically to calculate which
service domains the user is currently in and the composition of services
available to each user. The system requires that there is a constant
connection between the EPE and the SCE.

The Server Module consists of two main components: SCE and Service
Database. The SCE plays the most important role in discovering and
updating ambient services. Its main task is to calculate the logical areas
the user is currently in and a composition of the sets of services available
to the user based on the location information received from the EPE.
Every time the user moves to a different logical area, a new set of services
is calculated and enabled for the user. The SCE also acts as a server to
the client devices that enter a particular logical area (i.e., comes within
the scope of some services). To send updated sets of services to the user,
it listens to the client device connections continuously. When a user enters
the area and connects to the server, it establishes a connection with the

1 http://coolcampus.csse.monash.edu.au/MonashLibrary/— a project of the Cool-
Campus Initiative.
12 http://www.ekahau.com.

Context-Aware Mobile Services ® 45

Device
Locations
Ekahau Positioning Caslg[l‘{;?ﬁ) n Service
ngine < Database
Send Sets /'/' Engine

Web

</' Services

Invoke
Services

Web services assume present

Mobile Devi .
obile Devices 1n remote servers.

Figure 3.5 Components of a system supporting ambient services.

client device and sends updated sets of services to the client device. As
the user moves from one logical area to another, the composition of
services available to the user would change, and a new set of services is
calculated and sent to the client device. The Service Database is a database
repository that stores the details about the logical areas of services. The
Service Database is on the same host as the SCE. The SCE retrieves the
services from the service database to calculate the locally relevant services
at a given geographic area.

The Mobile Client Application is an application installed in the mobile
device of the user. This device is tracked by the EPE. The basic function
of the client application is to receive the sets of services from the server
and display it to the user. When the user invokes the service, the client
makes a request to the Web service. The prototype developed is specif-
ically aimed at the pocket PC and developed using the Microsoft. NET
Compact Framework (CF). When users enter a particular area, they are
required to log in with User name, User type, and Password to check the
user type of the mobile user, because different user types have different
privileges in the system. After logging in, once the user clicks the Connect
button, the mobile device will connect to SCE, which is waiting for client
connections on the server machine. It then receives the services that are

46 m Context-Aware Pervasive Systems

CHent Application oz 551 €3 (0
CSSE Web Services

Logica drea: fress

EasicfAdvance Saarch
Renew Loans

Vizwy Personal Information
Wigwy Tasks

Figure 3.6 Services available in area 2 (office logical area) displayed on a user’s
mobile device.

calculated and transmitted by the SCE. A new set of services is sent to
the mobile client application every time the user moves from one logical
area to another (as detected by processing data from Ekahau). Thus, the
services displayed to the user are updated every time it receives the new
sets of services. The services available in area 2 (office area) are displayed
for the user in his or her mobile device as shown in Figure 3.6.

For example, when the user moves from area 2 (office logical area)
to area 1 (external logical area), a new set of services will be enabled for
the user. The services available in area 1 are displayed for the user in his
or her mobile device as shown in Figure 3.7.

For evaluation, we use a Compaq iPAQ handheld device and a desktop
PC. The Compaq iPAQ was used to implement the mobile client application
and host Web service clients. The desktop was used to run the EPE, SCE,
and Service Database.

In Figure 3.8, T(logical area 1) is the time a user starts moving from
a location. T(logical area 2) is the time the user arrives at the new location.
T(message updated) is the time the user sees the new list of services.

The feasibility of the prototype system was measured by calculating
the total time taken for the system to discover or update the relevant
services for a user once he or she arrives at a new location. The total

Context-Aware Mobile Services ® 47

f.y Client Application = 5:34 a
(C55E Web Services

Logical Area: Areal

e Tasks
Add Tasks
Search Tasks
acld Students
Printing Service
Printing Service

Figure 3.7 Services available in area 1 (external logical area) displayed on a
user’s mobile device.

< s = Time (sec)
T (Logical Area 1) T (Logical Area2) T(services "

updated)

Figure 3.8 Timeline to update sets of services.

time taken T(service updated) is the length of the time between T(message
updated) and T(ogical area 2). The total time taken T(service updated)
is calculated by adding the time taken to track the user’s current location,
the time taken to access the database, the time taken for calculating
services, and the time taken for transmitting data to the mobile device.
The formula to calculate T(service updated) is as follows:

T(service updated) = T(tracking user’s location)
+ T(accessing the database)
+ T(calculating services)

+ T(transmission of data between service engine and mobile device)

48 m Context-Aware Pervasive Systems

Table 3.1 Measurement Results

Time
Average Time Measurement (s)
T(tracking user’s location) 2
T(accessing the database) + 5
T(calculating services)
T(transmitting data to mobile device) 1.2
T(service updated) 8.2

A total of 10 runs for a period of approximately 1 min (60 s) were
made to measure the time delay for each of the four processes. Based
on the test results, the average time measurements for each process were
calculated. T(service updated) is then calculated by adding the time
measurements of each process. The measurements are approximate as
they depend on the model of network cards, the number of access points,
the CPU, and the EPE load. In calculating the overall delay, the EPE
tracking delay is also considered, although it does not affect significantly
the overall delay. In this testing, the time taken for the invoking of Web
services is not calculated as we only focus on the discovery and update
of the available list of services at this point. Table 3.1 shows the results.
The 8-s delay can be greatly reduced by removing the database access
time (i.e., by reading the mapping tables into memory beforehand).

So, the time taken for services to be updated from the previous area
to the new area would be (1) the time taken for a user to travel from the
previous logical area to the new logical area, i.e.,

T(Logical Area 2) — T(Logical Areal),

as shown in Figure 3.8, plus (2) T(service updated).

We note that it takes around 2 s to detect a user’s change of location,
i.e., T(tracking user’s location) = 2 s.

This is a characteristic of Ekahau, although such a time lag (either
more or less) is inevitable regardless of what positioning technology is
used. Other forms of positioning technology (e.g., detecting presence
based on a RFID tag worn on a person [Varshney, 2002]) might permit a
user’s new location to be detected much faster. T(service updated) trans-
lates into user wait time. The user wait time can be stated more generally
as the time since a change in context (in this case, the service domains
the user is located in) or the time the user waits before seeing an updated
list of services after he or she has changed context, and is given by the
following expression:

Context-Aware Mobile Services ® 49

T(user wait time) = T(context change detection)
+ T(compute services for current context)

+ T(transmission of services updates to mobile device)

An implication of this is the effect of the rate at which the user changes
context. If the user is moving quickly (e.g., in a bicycle) in and out of
service domains, either some of the context changes will not be detected,
or, even if detected, the system will lag behind the user. In general, the
user should remain in the same context for a period larger than T(user
wait time) for the system to catch up with the user. This is not a problem
if the user needs to stop to invoke and use services.

It is also to be noted that Ekahau has a 1-m accuracy error, which
imposes a limitation on the size of logical areas we can have and the
extent of movement detectable. Logical areas of too small a granularity
are not distinguishable by Ekahau. In other words, visually, the geographic
boundaries of ambient services in this case are “thick lines.” This means
that when the user is standing on such a line, whether the user is still in
the service domain or not depends on Ekahau’s computation at that time
(which in turn depends on the signal strengths at that time). Finer-grained
positioning technologies might overcome this barrier.

The Mobile Service Toolkit (MST) (Toye et al., 2005) implements the
idea of site-specific services, or services that reside in a specific location.
The MST client software runs on users’ smartphones and supports Blue-
tooth connection to application servers. Personal information stored on
the smartphone can be used to personalize services, and there is user
control over the disclosure of such information. An example given involves
booking a specific place in the queue of a restaurant and being SMSed
when the table is ready. Another example of a service involves interactive
advertising in which a user can transmit personal information from the
phone to request a brochure about a vacation site.

3.5 FROM AMBIENT SERVICES TO PLACE-BASED
E-COMMUNITIES

Short-range networking technologies and ambient services form the basis
for place-based electronic communities or PBE communities, for short
(called location-based E-communities in Loke, 2002), induced by a location
and the (possibly temporary) geographic collocation of people. A PBE
community carries the idea of richer member participation and interaction
via particular services. Services can be conceptually grouped into those for
a given PBE community. We use PBE community here to mean a collection
of geographically relevant services and the participants. For example, the
PBE community of a hotel is supported by a WLAN for hotel guests and

50 ®m Context-Aware Pervasive Systems

Place-based communities

Applications

Limited range wireless LAN
Infrastructure and mobile devices

Figure 3.9 Layered model for PBE communities.

hotel management and services built on top of the WLAN infrastructure.
Services might be provided to individual users, without the users necessarily
interacting among themselves (e.g., each user can do Web browsing but
is unaware of other people connected to the same WLAN).

Such PBE communities constitute virtual spaces, which are counterparts
of real-world location spaces, particularly for users on the move. An
individual in a hotel has not only the hotel as a physical community but
also a corresponding PBE community supported by WLAN. The individual
is able to access services or interact with other individuals in the physical
(and virtual) community. A PBE community can thus be considered an
E-community that is induced by, and is a counterpart of, an individual’s
surroundings or location. We see the PBE community as, roughly, the
highest abstraction of the layered model shown in Figure 3.9.

Note that the individual might still have access to virtual communities
on the Web (which are geographically transcending and location-indepen-
dent) and might only be at a location for a short time (and so have only
minimum or rapid interaction with a PBE community).

Rheingold (2002) discusses the phenomena of smart mobs and mobile
virtual communities, which can form in an ad hoc fashion with each
individual having a mobile device interconnectable to others’ devices via
short-range device-to-device ad hoc networking or via wide area networks.
For example, the use of SMS messages can be employed to rapidly organize
meetings at a given place. We see PBE communities as aggregations of
services offered via WLAN hot spots.

A supporting software infrastructure can support user interaction within
PBE communities. We assume that to access the services of a community,
there is a community server.

3.5.1 Interaction between User and Community Server

A multiagent architecture for this purpose is described by Rakotonirainy
et al. (2000). We give an overview of this architecture here. Figure 3.10

Context-Aware Mobile Services ® 51

proxy agent1

mobile device1

mobile device2

Figure 3.10 Interaction of mobile devices and users within a PBE community
supported by a multiagent system.

illustrates two mobile devices that interact with agents acting as proxy
for these devices in a PBE community. The proxy agents mediate
between mobile device users and service agents. Mediation can mean
filtering input streams from devices or providing interfaces to services
for mobile device users. The collection of proxy agents and service
agents form a multiagent system that supports users in a PBE community.
Predefined protocols are used for exchange of messages whenever a
device (and user) first joins a PBE community and whenever a device
leaves a PBE community. Depending on the underlying networking
technology used, the joining protocol can be based on a push technique
whereby the community server pushes an “invitation to join” message
to the device. Alternatively, a pull technique can be used whereby the
user sends a “request to join” message to the community server. The
leaving protocol determines what happens when a device (and user)
leaves the logical area. With PBE communities, we expect the user to
leave the community when leaving the area, albeit this is not necessary
(because participation in a virtual community can be retained even if
the user is outside the logical area, provided networking technology and
software infrastructure supports this). The leaving and joining protocols
might be community dependent, varying between communities. Services
available can be the ambient services described earlier, as well as services
that support community interaction, such as ICQ-like presence technol-
ogies or blog spots.

3.5.2 Interaction between User and Multiple Communities:
Impact of User Movement

As the user moves across different logical areas, the user also moves
across different place-based communities corresponding to those areas. A
conceptualization of the user’'s movements relative to these communities
is the community stack. An example illustrates this idea.

52 m Context-Aware Pervasive Systems

Figure 3.11 Nesting of café, shopping complex, and suburb.

Consider a person P, a member of company X. P enters suburb S (say,
in a car), then enters shopping complex C (say, walks in after parking
the car), and, finally, walks into café A within C. The nested areas are
depicted in Figure 3.11. Then, when P is in A, services available to P can
include those in A, C, and S (and even compositions of these services);
i.e., P is in the place-based communities for A, C, and S. As P exits A,
the services reduce to those in C and S, and as P exits C, the services
reduce to those in A. Generalizing from this example, a stack of commu-
nities is conceptualized for a user. Each entry into a community (or logical
area) pushes the community onto the stack, and each exit from a com-
munity (or logical area) pops the community off the stack.

3.6 ENHANCING CONTEXT-AWARE MOBILE SERVICES
WITH MOBILE CODE AND POLICY: THE MHS EXAMPLE

Although E-services can be implemented via Web service technology,
additional mechanisms are useful for mobile services driven by context
awareness, which would need to be delivered to users in an ad hoc
manner without the assumption of an extensive a priori setup. This section
introduces two mechanisms that can be used to enhance the delivery of
context-aware mobile services. To illustrate the use of these mechanisms
for context-aware mobile services, we describe the Message Hanging
Services (MHS) implementation here based on the work of Syukur, Cooney
et al. (2004) and Syukur et al. (2004a). One can note the similarity of the
MHS framework with the framework for ambient services described earlier;
the difference is in that the MHS uses mobile code and policies.
Sensing the user’s context (i.e., a user’s location), the MHS system can
proactively discover and compute a list of services that may be useful to
the user at that particular context. This list is sent to the user’s mobile
device. MHS views a service as a software tool delivered to the user’s
device for the purpose of suggesting or helping users to complete their

Context-Aware Mobile Services ® 53

tasks. As the user selects from the list a particular service name on the
mobile device, the highly compact (with respect to limited device
resources) mobile code that provides control for the service is then
downloaded. Such a mobile code can encapsulate a user interface and
logic to interact with embedded devices or applications in the environ-
ment. The mobile code also encapsulates the protocol for interaction with
the services on remote servers; because the code is downloaded, details
of the protocol need not be on the device beforehand. The combination
of context sensitivity and mobile code can provide useful services to the
user with minimum or no effort for service setup prior to use.

Apart from applications exposed as Web services, we also consider
how the MHS framework can be used to “wrap” traditional applications
up as context-aware mobile services. Here, traditional application refers
to a primitive stand-alone application that does not have or utilize any
context-sensing ability. One sample traditional application that will be
discussed here is a Windows Media Player application. Adding context
sensitivity to a traditional Windows Media Player application enhances the
user’s experience in using the Windows Media Player.

Apart from adding context sensing, we can also allow the end user to
define a policy that specifies what type of music, as well as when and
where, he or she wants played or stopped at each particular situation.
The policy language here is used to govern and restrict the behaviors of
the services according to the user’s needs. Another advantage of having
a policy is to enable the user to specify tasks to be done automatically
in a certain situation (e.g., automatically starts the music at 9 p.m. at room
A), which is especially useful if there is regularity in the user’s activities.
In addition, MHS enables the user to access the Windows Media Player
application and control the music from a mobile device.

3.6.1 MHS Architecture

The MHS system provides an infrastructure that mediates the interaction
between the client device and the application logic via Web service calls.
This high-level architecture is illustrated in Figure 3.12.

One can view the MHS architecture as an extension of the framework
for ambient services given in Section 3.4, with additional components to
support mobile code delivery and policy processing. Six of the most
important components of the system are described here, five as follows
and the sixth in the next subsection:

Policies interpreter: This component computes a set of useful services
for a user by interpreting the user’s policy documents. The inter-
pretation is done on the server side and it takes into account

54 m Context-Aware Pervasive Systems

Service Discovery Location Server e

NN
© Web Policies Web Client

i Interpreter —» o
POhC.y Service ¥4 Service o Application
Repository Policies
~_ Conflict Invocation Code Cache
Resolution -
Policy
Execution
Mobile Code Server
Code
i Mobile Device
Repository Invocation ggﬁ?;:)r
\/

Server Side Application

Figure 3.12 High-level architecture of Mobile Hanging Services.

information regarding the user’s current contexts, i.e., a user’s current
location, day, time, and a user’s identity.

Code cache: Tt refers to the mobile code application stored on the
device for future reuse. Code caching is important if we are using
a code downloading technique.

Code server: This refers to the mechanism that handles a user’s request
(from a mobile device), responding to that request by transferring
the relevant mobile code.

Client application: The application resides on the mobile client side
that manages the incoming mobile code and executes the imported
service interface code on the device.

Context collector: Context collector collects all users’ contexts informa-
tion, which are related to the user’s current activities. In the prototype
described by Syukur et al. (2004a), the context collection process
is performed by calling the respective Web service. For example, to
get a user’s current location, the context collector needs to invoke
a location Web service method.

3.6.1.1 Policy Conflict Resolution

As each entity (e.g., a user) in the system is allowed to create its own
policy and each entity may have a different set of rules, there is a chance
of conflicts occurring. The policy conflict resolution component handles
conflicts between entities in the system, if any. There are three possible
techniques to resolve conflicts. To decide the technique to be used, a

Context-Aware Mobile Services ® 55

role-based method is employed. The policy conflict resolution component
analyzes the type of role that the user has. Role here refers to the level
of privilege of an entity in the system (i.e., a general user, power user,
or super user). Basically, the purpose of the role is to group and assign
different levels of authorities and privileges to each entity.

The grouping here is based on the type of entity. For example, an
entity with the type student will have a general user role, a lecturer entity
has a power user role, and the head of a school has a super user role.
A super user is at the top of the hierarchy in the system, followed by a
power user and a general user. An entity with a higher role can do more
things compared to an entity with a lower role. For example, a super user
can choose either to stop the currently playing music or to play his or
her own favorite music. A power user can only stop the music, and a
general user is not allowed to stop the currently playing music.

The conflict resolution techniques are discussed as follows:

B Hierarchy override policy: By default if the conflict occurs between
users that have different roles, a user with a higher role can override
the policy that belongs to the user with a lower role.

B Soft/hard rules override policy: Policy conflict may also occur
between users that have the same roles. If such a conflict occurs,
the system then needs to detect the type of policy rules that
resulted in the conflict, i.e., a soft or hard rule. The policy with
a soft rule characteristic is a flexible policy that can be modified
depending on the user’s current situation. In contrast, hard rules
cannot be modified. If both conflict policies have different types
of policy rules (i.e., one is a hard rule and the other is a soft
rule), then the soft/hard rules override policy will be applied. This
conflict resolution technique means that hard rules will always
override soft rules.

B Merging policy: The merging policy is used if the conflict occurs
among users with the same role and the same type of policy rules
(soft rule—soft rule or hard rule-hard rule). Merging here will
combine the rules from each entity involved in the policy conflict.

3.6.2 Context-Based Policy Control of Media Player Service

A Windows Media Player is a stand-alone application that will not perform
any actions (i.e., start, stop, pause, or resume the music) until there is a
request from users to do so. Adding context sensing to any traditional
application can improve the user’s experience. Using the MHS framework,
context-sensitive behaviors can be added to almost any existing traditional
application. This is possible as the system permits a remote Web service

56 ®m Context-Aware Pervasive Systems

2. Call the Ekahau
server Ekahau Server

Tracking System

v

Location
Web Service
==

1. Get the user’s 3. Return the user’s

location location
4. Return the user’s
location
6. Start the Windows 7. Start playing the =
Media Player Service on music 3

Coolcampus Machine i
%lcampus Machine

5a. A system displays a list of
target machine names on the
user’s mobile device depending
on the user’s current location —
Goalpool Machine
5b. A user selects the target
machine name e.g., Coolcampus
machine and the music name

Figure 3.13 Starting the Windows Media Player service from a mobile device.

call from a client device to a server or vice versa and from a server to
any computing devices (i.e., a desktop machine). The .NET remoting
mechanism is used to access the application’s API (Application Program-
ming Interface). Through the API, the MHS system can control the exe-
cution of the application.

The ability to download and execute in an ad hoc fashion a mobile
code on the mobile device where the code can be used to control the
Windows Media Player application (i.e., the user can choose to start,
pause, resume, or terminate any music at any target desktop machine!?
that he or she likes from a mobile device and from any location that the
user is in) gives the user convenient control over the application.

Figure 3.13 illustrates in more detail how to start the music service
manually on the target desktop machine from a user’s mobile device.
Each step required to start the music on the target machine is discussed
as follows:

Steps 1, 2, 3, and 4: Get and return the user’s location. Once the user
has successfully logged in, the system calls the location Web service
to retrieve the user’s current location. If found, the information is

13 Although we used a desktop computer in our prototype, one could also imagine a
music service server that is not a desktop computer but “faceless” hardware embed-
ded into the environment (e.g., embedded into the wall of a room), and, so, the
only means to control the service is the user interface provided via the mobile code
on the user’s mobile device.

Context-Aware Mobile Services ® 57

returned to the Windows Media Player client application that resides
on the mobile client side.

Step 5a: Display a list of target machine names. As soon as the user’s
location is returned, the system then displays a list of target desktop
machines in that particular location. We store information regarding
the mapping between the room and list of machines in an XML
database. Knowing a user’s current location, the system will be able
to search and get a list of available machines for that particular room.

Steps 5b and 6: A user selects the target machine name and starts the
Windows Media Player service on the Coolcampus machine. Once
the user selects the target machine name (i.e., Coolcampus
machine), a list of songs, which are available on that machine, is
then displayed. Then, when the user chooses to start, pause,
resume, or stop this song, the system then calls a Remote Media
Player Web service to execute the music on the Coolcampus
machine as specified by the user.

Step 7: Start playing the music. If the user chose to start the music,
the Remote Media Player Web service then contacts the remoting
client that resides on the Coolcampus machine to start playing the
user’s music selection.

The steps just mentioned are for starting the Windows Media Player
service process manually, i.e., as initiated by a user selecting the music
name from a mobile device. Given control on the execution of the
application through its API, one can make the Windows Media Player
application react more “intelligently and autonomously” (without the user’s
intervention) by integrating some context information about the user and
extra rules or policies that specify when and where to automatically start
and stop the music service in response to context changes. For example,
a user’s favorite music is automatically started at the user’s desktop
machine as soon as the user enters room A, and once the system detects
that the user has walked out of the room, the system will then pause or
stop the music.

After presenting the utility of having policy documents in the context-
aware ubiquitous environment, we note design criteria for a policy lan-
guage. The first consideration is whether the policy document is easy to
be used and understood by users. Easy to use here means that the policy
language is simple (not overly complicated) and all notations or element
names are largely self-describing. The second consideration is that the
policy language should be extensible and capable of being used in any
situation (simple or complex situation). In our definition, a simple situation
consists of only a single entity (i.e., one user) at the particular space and
time. A complex situation here involves two or more entities with different

58 m Context-Aware Pervasive Systems

sets of rules or policies. In complex situations, a conflict is more likely
to occur as different users may have different rules to govern the service
execution for the same context.

Taking into account design criteria mentioned earlier, MHS currently
provides a simple initial design of a policy language with eXtensible
Markup Language (XML). The policy language is structured according to
the user, i.e., a user name, followed by day, location, and start-and-end
time when the policy needs to be executed. For example, by looking at
the following sample policy document, we can see that the user named
“Bella” wants to start the “Secret Garden” song automatically at her desktop
machine from 2 p.m. to 3 p.m. on Sunday.

<?xml version="1.0" encoding="UTF-8"?>
<mediaPlayerPolicy>
<user name="Bella">
<policyDetails>
<activity day="Sunday">
<location name="MobCompLab">

<activityDetails startTime="2:00PM" end
Time="2:30PM">

<action type="start">
<service name="Media Player Service">
<songName>SecretGarden.wav</songName>
<machineIPAddress>130.1.194.224
</machineIPAddress>
</service>
</action>
</activityDetails>
</location>
</activity>
</policyDetails>
</user>

</mediaPlayerPolicy>

To process policies, the system uses multiple threads. The threading
process will run once the mobile client application is started on the device.
This running thread will keep monitoring the current time and location of
the user. Once the time and location are detected, the system then auto-
matically transfers and executes the specified service code on the mobile
device. After this, the steps are the same as steps 6 and 7 mentioned earlier.

Context-Aware Mobile Services ® 59

8. Get the user’s 14. Stop the music on the Coolcampus Machine if the
updated location system detects that the user has walked out from the
room or the policy has elapsed

Location
Web Service

Remote
Media Player
Web Service

9. Return the user’s
updated location

10. Get the user’s policy

on when to stop the song 15. A song is stopped

13. return the user’s policy
“Stop musiclrmi on the
Coolcampus machine at 2PM at
<J__ > B5.38 room on Wednesday”

Policy
Interpreter
Web Service

11. Get the l T 12. The user’s Coolcampus Machine

user’s policy policy found

Policy XML

Documents

Figure 3.14 Stop the Windows Media Player service on the target machine.

In general, there are two possible reasons the system needs to stop the
song automatically on the target machine: (1) the system detects that the
user is no longer in the room; i.e., the user has walked out of the room,
and (2) the time to stop that particular music in the user’s policy file has
been detected. A user can also manually stop the music by clicking on
the stop button on the Media Player service interface from a mobile device.

By specifying such behaviors in a policy file, the user is freed from
performing regular tasks, i.e., starting and stopping the music service, and
relies on the system to do it automatically.

After describing the steps required to start the music on the target
machine, we discuss the steps to terminate the music (see Figure 3.14):

Steps 8 and 9: Get the user’s updated location and return the updated
location. The system first checks whether the user is still in the same
room. If the system detects that the user has walked out of the
room, the system then continues with Step 14. Otherwise, steps 10,
11, 12, and 13 are performed.

Steps 10, 11, 12, and 13: Get the user’s policy and return the policy
to the mobile client application: If the system detects that the user
is still in the same room, the system then looks for the user’s policy.
If the time to stop the music has elapsed, the system then continues

60 ®m Context-Aware Pervasive Systems

with Step 14. Otherwise, the system continues to monitor the user’s
current location (refer to steps 8 and 9).

Step 14: Stop the music on the target machine. If there is a request to
stop the song, the remote client that resides on the target machine
then needs to invoke a stop method to terminate the song playing
on this machine.

Step 15: A song is stopped. On invocation of the stop method, the
Windows Media Player service stops playing the music.

Steps 1 to 15 described in the preceding text can be the same for
adding context awareness to other applications such as Virtual Network
Computing application, Games, etc. The difference is that instead of the
Remote Media Player Web service starting the Media Player process on
the target machine, another type of application process will be started.
The user may want to specify different execution and termination policies
for different applications in the user policy XML document.

A performance evaluation of the MHS prototype that involves measur-
ing the time it takes to get a user’s updated location to the time it requires
to execute the service on the mobile device is given by Syukur et al.
(2004b). Different heuristic techniques can be used to improve the MHS
performance, i.e., by reducing service execution time and context change
delay when the user moves from one place to another. The results show
that the user wait time is not prohibitive and highlight the importance of
runtime efficiency for context-aware systems.

3.6.3 Partial Control between User and System

As the MHS system supports both manual and automatic execution of
services, it is important to clearly separate the control between users and
systems; i.e., when should control be given to the user and when should
the system be in control? Giving control back to the user becomes extremely
important, especially when the user performs some odd activities during
the day, which is different from the tasks that he or she has specified in
the policy document. For example, a user has a group meeting at room
A (the user’s office). He specifies in the policy document to start the music
at his office at 3 p.m. (i.e., after the meeting). But, what happens if the
meeting is not finished at 3 p.m.? Given a policy rule, as soon as the
current time is 3 p.m., the system will automatically start the music in room
A. The system might do this automatically by interpreting a user’s policy
document, unable to tell accurately whether the meeting is over or not.
If such a situation happens, most likely the user will want to manually
stop playing the music from his or her mobile device. This is done by
selecting the service name, i.e., Media Player, on the mobile device, and

Context-Aware Mobile Services ® 61

a mobile code with respect to this Media Player service will then be
downloaded to the user's mobile device. Once the service interface is
displayed, the user then clicks on the stop button to manually terminate
the music. Once the system detects that the user is manually performing
the task and this task is different from the activity specified in the document,
full control is returned to the user. The system will not perform any further
policy interpretation (and music execution) until the system detects that
the user has closed the Media Player service form. Once the form is closed,
full control is returned to the system. The system then continues to interpret
the user’s policy document and automatically starts, pauses, resumes, or
stops the music. In summary, MHS’s current control scheme is as follows:
the user takes control of the service by requesting and using the mobile
code application (containing the user interface) for the service, but control
is returned to the system when the user closes this service application.

3.6.4 MHS Summary

The MHS prototype described earlier can be extended, for example, by
including more complex policy, which take into account conflicts between
entities in the system, and more types of contexts such as a history log
file and physical sensors. As presented here, MHS illustrates how mobile
services can benefit from deployment of mobile code and how the concept
of policy is useful for specifying context-aware behaviors.

3.7 ENHANCING CONTEXT-AWARE MOBILE SERVICES
WITH MULTIAGENT TECHNOLOGY: THE EXAMPLE
OF PROXIMITY-BASED REVERSE AUCTIONS

We have already seen an application of multiagent technology to support
place-based communities. This section further explores the idea of using
intelligent software agents to enhance physical marketplaces, as they are
employed in the context of assisting shoppers (i.e., a shopper in a shopping
mall or a popular shopping street such as Orchard Road in Singapore,
which is lined with shopping complexes, or Bourke Street Mall in Mel-
bourne, Australia). More specifically, we consider using agents to answer
a specific kind of user query with a concept called proximity-based reverse
auctions, which represents an E-marketplace superimposed on a physical
marketplace. This section is based on the work of Loke (2003).

3.7.1 Proximity-Based Reverse Auctions

In reverse auctions, instead of buyers bidding for the goods of a seller,
sellers bid for a buyer, who announces a price he or she is willing to pay

62 ®m Context-Aware Pervasive Systems

for some item. The reverse auction helps to answer the buyer’s query of
the kind “Who can sell me X at price P (or less)?” Proximity-based reverse
auctions are reverse auctions with constraints due to the user’s location
and time limitations. A typical query that such auctions will attempt to
answer is, “Who can sell me X at price P (or less)? And without me
walking further than 100 m from here, and T would like to know this
within 3 min.” We call such queries PRA queries. Such queries can be
issued from a user’s mobile device to a stationary Bluetooth access point
or a WLAN access point (on which runs server software to which vendors
are connected) while the user is, say, in a shopping mall or on a street,
or via a GPS-enabled device.

We can also view proximity-based reverse auctions as taking a step
further than the ordinary location-based queries of “where can I get X?”
to “where (and how) can I get X for price P (and tell me the answer within
the next T minutes, and give me an answer where I do not need to walk
too far),” where P can be determined dynamically by a reverse auction.

Implicit in the query are three constraints: (1) the location constraint
— X should be bought from a shop not too far from where the user
currently is, (2) the time constraint — the query should return a reply to
the user within several seconds or, at most, several minutes because the
user (on the move) would not be at the same location for a long time,
and (3) the price constraint — the query should return an answer within
the stated price, or near the stated price. If no such price is found, then
return the lowest price found.

There might be a trade-off among constraints that could be prespecified
by the user. For example, a nearer shop might sell X for a slightly higher
price than a shop further away, and the user might choose the nearer shop
if the price is not too much higher. The ideal answer to the user’s query
is one that is nearest and cheapest. But if the ideal is not possible, the
answer might comprise a set of alternatives from which the user can choose.
As soon as a query is issued, multiple vendors are triggered to be involved
in a reverse auction to bid for the user’s sale. The duration of the auction
is a factor here; if the user cannot wait, and the lifetime of the auction is
too short, the resulting price might not be optimal.

The concept of reverse auctions is not new, and corresponds to a
shift of trend from vendors asking “would you like this?” to buyers asking
“who can get me this?” Proximity-based reverse auctions is also perhaps
not a radically new concept; an example: several parking facilities or
family restaurants within an area can bid for a car’s business. There has
also been recent work in developing middleware to bring online auctions
from the desktop to mobile devices, and the popular auction site
www.ebay.com has enabled access to their auction site via PDAs and
SMS messaging.

Context-Aware Mobile Services ® 63

An issue with such auctions in which participants or potential partic-
ipants are mobile and only have resource-limited devices is how to monitor
the status of auctions. For example, one may be interested in what auctions
are going on, what is happening in a particular auction, or the results of
recent auctions for a particular type of product but does not have the
luxury of browsing an informative data-intensive auction Web site because
of device limitations and being on the move. One way to get such
information is to use a publish/subscribe event notification system in
which a user subscribes to auction events of interest, and event notifica-
tions generated by the system are forwarded to the user as small chunks
of information over time. Event-based (or push-based) observation might
fit better into the mobile computing context than browsing-based (or pull-
based) observation, for both users and agents, because of potentially better
bandwidth utilization than in continuous polling and the asymmetry in
the mobile environment (a lot more mobile clients than servers, greater
need to conserve power on the client side, less computational and memory
resources on the client side, and higher server-to-client bandwidth in some
types of wireless networks). But more on such an approach to reverse
auctions later.

3.7.2 A System for Proximity-Based Reverse Auctions
3.7.2.1 Architectural Overview

A multiagent system is presented for proximity-based reverse auctions to
automate most of the process. Such a system will provide invaluable aid
to both vendors (shops) who might service hundreds or thousands of PRA
queries at a time (and so be involved in many reverse auctions at the same
time), and buyers who might initiate several such PRA queries at the same
time and who are on the move. There are many possible architectures for
such a system, but we contend that it should at least comprise four types
of agents: user agent, broker agent, vendor agent, and observer agent.
Figure 3.15 illustrates such an architecture. The user agent runs on the
mobile device, whereas the other agents run on the server side on stationary
hosts. An outline of the agents’ functions is as follows:

B User agent: The user agent runs on the user’s mobile device and
interacts with the user, mediating between the user and the server-
side agents. The agent accepts PRA queries from the user (i.e., the
potential buyer), expands it with the user’s preferences stored
locally, and then forwards the query to the broker agent over a
wireless connection. The user agent also accepts event subscrip-
tions from users and forwards them to observer agents. Event

64 ®m Context-Aware Pervasive Systems

Stationary host Vendor

agent

Broker
agent

ereless. Vendor
Connection agent

Figure 3.15 The multiagent system for a proximity-based reverse auction
spawned by a mobile user.

Mobile
host

notifications are also received by the user agent and displayed to
the user.

B Broker agent: The broker agent runs on a stationary server receiving
PRA queries from the user agent. On receiving a PRA query from
a user agent, it invites vendors (represented by their agents) to
participate in a reverse auction to answer the PRA query (i.e., to
find a vendor with the lowest price satisfying the time and proximity
constraints). The broker agent then coordinates the reverse auction
playing the role of the auctioneer.

B Vendor agents: A vendor agent represents a vendor in a reverse
auction, including bidding and settlement. The strategy used by
the agent would be determined by the vendor. It is the vendor
agents (representing different vendors) that bid against each other
for the purchase.

B Observer agents: Observer agents act on behalf of users. On
receiving subscriptions from user agents about particular events,
the observer agent subscribes to the requested events (with an
event notification system) on behalf of the user.

Note that additional types of agents can be included in a more
sophisticated architecture with greater functionality or to improve effi-
ciency, or many instances of such agent types might be employed. For
example, a vendor might use hundreds or thousands of agents — one
to participate in each auction — or one agent to participate in several
auctions at the same time. Also, there could be separate agents for the
broker and auctioneer roles and a hierarchy of brokers over hierarchically
structured geographic domains; for example, there can be a broker for

Context-Aware Mobile Services ® 65

a shopping mall, a broker for each shopping complex in the mall, and
a broker for each department of a shopping complex. However, we will
not focus on such implementation details here but on the least of what
such a system would need (i.e., the minimum components to achieve
the required functionality).

As noted in Loke (2003), a prototype proof-of-concept system with
minimum functionality using the JADE-LEAP toolkit' has been imple-
mented. The system consists of a user agent running on a Palm Vx
emulator, a broker agent, and vendor agents, all running on a WinME
laptop. Note that the vendor agents and broker agents can run on different
machines, which is what one might expect in a real-world deployment.

In a typical run, the user poses a query with time, distance, and price
constraints to the user agent, which then passes the query on to the broker
agent. The broker agent then selects vendors within the given distance
constraint before initiating a reverse auction with the selected vendors’
agents. Adaptation of the English auction FIPA protocol is used to perform
a reverse auction bounded by the user’s time constraint. The auction will
end when time is up or, after a wait time, when there are no other
competing bids. The user is then informed of the vendor with the best
prices and locations attained.

3.7.2.2 From the User’s Viewpoint

Figure 3.16(a) shows the JADE-LEAP user agent on start-up. The user
interface contains a list of products that the user can select from and
indicates the price required. Figure 3.16(b) shows a feature of the user
agent that enables the user to configure his or her profile. The profile
information includes the time the user is willing to wait for the results of
the query (this imposes a time bound on the whole auction), the maximum
distance between the user’s current location and the vendor, and vendors
that the user does not want to buy from. The profile information is included
with the user query sent to the broker agent. The broker agent, on
receiving the query, initiates bidding among vendors and, after bidding
has ended, forwards the results to the user agent. Figure 3.16(c) shows
the results of an auction showing the product the user wanted to purchase,
the lowest price (satisfying the user constraints), the vendor selling the
product with that price, and the distance of the vendor from the user.
Figure 3.16(d) shows the receipt the user receives after the user confirms
the purchase.

4 http://jade.tilab.com/.

66 ®m Context-Aware Pervasive Systems

Figure 3.16 (a) The user agent starts up and provides an interface for the user
to enter a query. (b) The interface for updating user profile information. (c) The
results of an auction to buy a hand phone. (d) The receipt after the user clicks
on the “buy” button in Figure 3.16(c).

Context-Aware Mobile Services ® 67

3.7.2.3 Interaction Protocols

The interactions among the user agent, broker agent, and vendor agents
are captured in four interaction protocols, one for each stage described
as follows, with the waiting time specified by the user allocated to the
second and third stages:

1. User and broker (user initiates purchase): The user is in control
and hence no part of the user-specified waiting time should be
allocated to this protocol. This protocol is based on the FIPA
Brokering Interaction Protocol Specification.!

2. Broker and vendor (system initialization/vendor selection): Because
the user is not in control, a certain percentage of the user-specified
waiting time should be allocated to this protocol. This protocol
was designed to handle the initialization of auctions. This is used
after the user has made a product request and involves the broker
and vendor agents establishing connections. The broker agent uses
the list of undesired vendors to filter out vendors (and also filters
out vendors who are too far away according to the user’s distance
constraint) and then attempts to establish contact with the vendors
(in its database or obtained by querying a registry) it considers
viable and “worthy” of its time and who might want to participate
in the reverse auction.

3. Broker and vendor (bidding protocol): Because the user is not in
control, a certain percentage of the user-specified waiting time
should be allocated to this protocol. The waiting time is used as
a time bound for the auction. Note that the time imposes constraints
on the strategies vendor agents use in the bidding. The time affects
agents in the sense that if too little time is given, bad choices may
be made by the agents, and, if there is too much time, the auction
would proceed at a less-than-normal pace. The protocol imple-
ments a reverse English auction based on the FIPA English Auction
Interaction Protocol Specification.!¢

4. Broker and user (results protocoD): The user is in control and hence
no part of the user-specified waiting time should be allocated to
this protocol. This protocol was designed to handle the finalization
of auctions. This is used after the broker has successfully found
(via a reverse auction) a vendor who is willing to sell the product
to the user. The system waits for the user to confirm the purchase
of the product, and, if the payment infrastructure is in place, the

5 http://www fipa.org/specs/fipa00033.
16 http://www.fipa.org/specs/fipa00031.

68 ®m Context-Aware Pervasive Systems

user can complete the transaction. The item can then be made
available for collection when the user drops in at the vendor.

The auction proceeds in rounds, in each of which the broker calls for
and receives bids, waiting up to a certain time limit for the registered
vendors to respond. At the end of this time period, the broker evaluates
the bids, responds to the bidders (informing them of the highest current
price), and initiates a new round with another call for bids. Note that
because there is a time limit, there is a maximum number of rounds. Also,
if in a round there are no further bids, the auction terminates. The user’s
waiting time allocated among the activities in stages 2 and 3 is distributed
among the various stages. This includes the maximum amount of time
the broker waits for vendors contacted to respond, the maximum amount
of time the broker waits for responses to bids (call for proposals) in each
round of the auction, the time the broker takes to evaluate the bids at
each round of the auction, and the maximum amount of time the broker
waits for vendors to reply to the user’s purchase confirmation.

3.7.2.4 Observing Auctions via Auction Events

The system described earlier augmented by a facility for observing auctions
is called the observer system. This system allows potential buyers and
sellers to view the current items for auction and the various associated
attributes. This enables one to “shop around” and see what items are up
for auction, but one need not necessarily get involved in the auction. The
observer system is based on a noncommercial version of Elvin,'” an event-
based publish/subscribe notification service. Notifications containing infor-
mation on a certain event are sent to a central Elvin server for distribution
to those who have subscribed to the event itself. There are primarily two
groups of observers: those who would be buyers and those who would
be sellers (i.e., vendors or retailers). Information the buyers might be
interested in includes the current best price of an item, items that are for
auction in various categories, details of items (i.e., model, features, etc.),
the sale of an item (i.e., status of an auction, current price so far in an
auction, etc.), various statistics about sales, and similar items but different
model and make (which might be cheaper or better). Information the
sellers might be interested in includes details of buyers who want items
that they are selling, other competitors’ actions, various statistics of the
marketplace (e.g., quantities of particular items other retailers have auc-
tioned off), and number of buyers in a particular category.

7 http://www.mantara.com/products/elvin-router/.

Context-Aware Mobile Services ® 69

An observer can subscribe to the system to be informed of the values
of the following attributes about an item:

Static Attributes Dynamic
Item ID: string Current price: monetary
Description: string Time left: seconds
Start: timestamp No. bids: long integer
End: timestamp Lowest bidder ID: string
Start price: monetary Bid history: array(bids)
Quantity: integer Auction status: string
Detail description: string
Image of item: binary file
Seller ID: string
Category: string

Auction status refers to a stage in the auction process. Figure 3.17
shows the various stages in an auction.

For example, potential buyers who are “just looking” can subscribe to
the system providing the category of items of interest or partial details of
an item of interest (keywords for various attributes) and obtain full details
of matching items and current auctions for the items of interest, or ask
for statistics about auctions in the area and obtain the number of retailers,
the number of items on auction, the number of auctions, the number of
categories, the most expensive item so far, and the cheapest item so far.
Potential sellers can look for buyers by subscribing to the service to be
notified about those who expressed interest in the items they are selling.
We expect the broker agents to generate and forward notifications to the
Elvin server as auctions are created and executed. Also, observer agents
represent users (potential buyers or sellers), storing and forwarding sub-
scriptions and notifications to and from the Elvin server.

Fonseca et al. (2001) describes a system implemented using the Zeus
multiagent toolkit for the shopping mall of the future, in which the mobile
user engages as a bidder in an English auction involving stores in the
mall. This proximity-based reverse auction system differs in the way it
answers a particular kind of user query using reverse auctions; vendors
are selected dynamically based on the query and user profile information.

Issues of trust and security, as well as how commitments can be
represented, have not been dealt with in detail; for example, an electronic
receipt for a purchase would need to be validated. These are familiar
issues with M-commerce. Dealing with failures and sudden disconnections
(e.g., the buyer simply changes his or her mind midway through an

70 m Context-Aware Pervasive Systems

1. New Item] |:> { 2. Bidding Commences }

-

{ 3. Waiting for other Bidders }

-

{ 4. Bidders Added }

-

[5. Lower Bid Received }

.

[6. Price of Item Decremented]

-

[7. Price Updated }

-

{ 8. Bidding Ends }

Figure 3.17 The stages an item goes through in the auction system.

auction, or the wireless connection fails) will be areas for future work.
The prototype currently uses a fixed allocation of time for vendor regis-
tration and the auction process. Dynamic allocation of time might be more
useful; for example, if enough vendors responded in a short time, the
system need not wait too long before starting the auction.

3.8 SUMMARY AND FURTHER DEVELOPMENTS

We have explored the notion of context-aware mobile services from a
number of different perspectives, introducing the concepts of ambient
services, PBE communities, and location-based reverse auctions, and illus-
trating possible implementation schemes with examples of architectures.
It is noteworthy that such localized services would tend to complement
mobile Internetwide services rather than replace the global Internet ser-
vices. Service-oriented computing remains an active area of research, and
the foreseeable future will see further developments in the area, enabling
(and perhaps going beyond) the possibilities mentioned here. Chapter 5

Context-Aware Mobile Services ® 71

returns to this notion of mobile services but from the perspective of
software agents on mobile devices.

ACKNOWLEDGMENT

This chapter contains (1) portions reprinted, with permission, from Loke,
S.W. and Zaslavsky, A., Integrated ambient services as enhancement to
physical marketplaces, Proceedings of the HICSS-37 Minitrack on Mobile
Distributed Information Systems, January 2004, ©2004 IEEE, (2) portions
from Loke, S.W., Krishnaswamy, S., and Naing, T.T., Service domains for
ambient services: concept and experimentation, Mobile Networks and
Applications (MONET) — special issue on mobile services 10, 2005,
Springer Science+Business Media, Inc., pp. 395-404, with kind permission
of Springer Science and Business Media, (3) portions reprinted, with
permission, from Syukur, E., Cooney, D., Loke, S.W., and Stanski, P.,
Hanging services: an investigation of context-sensitivity and mobile code
for localized services, Proceedings of the IEEE International Conference
on Mobile Data Management, Berkeley, CA, 2004, pp. 62-73, ©2004 IEEE,
and (4) portions obtained from Loke, S.W., An exploration of agent
assistance for physical marketplaces: proximity-based reverse auctions,
Proceedings of the International Conference on Intelligent Agents, Web
Technologies and Internet Commerce — IAWTIC2003, Mohammadian, M.,
Ed., February, 2003, Vienna, Austria, pp. 124-135.

REFERENCES

Attane, M. and Papi, J., E-parking: user-friendly ecommerce to optimize parking space,
Proceedings of the 1st International Conference on Mobile Business, Greece,
July 2002.

Fano, A. Shopper’s eye: using location-based filtering for a shopping agent in the
physical world, in Proceedings of the International Conference on Autonomous
Agents, ACM Press, 1998, pp. 416-421.

Fonseca, S., Griss, M., and Letsinger, R., An Agent-Mediated E-Commerce Environment
for the Mobile Shopper. Hewlett-Packard Laboratories, Technical Report HPL-
2001-157, June 2001.

Gershman, A., McCarthy, J., and Fano, A., Situated computing: bridging the gap
between intention and action, Proceedings of the 3rd International Symposium
on Wearable Computers, San Francisco, CA, 1999.

He, M., Jennings, N.R., and Leung, H.-F., On agent-mediated electronic commerce,
IEEE Transactions on Knowledge and Data Engineering 15(4), 985-1003, 2003.

Jagoe, A., Mobile Location Services: The Definitive Guide, Pearson Education, 2002.

Karp, A., E-speak explained, Communications of the ACM 46(7), 112-118, ACM Press,
U.S.A., July 2003.

Kolmel, B. and Alexakis, S., Location based advertising, Proceedings of the 1st Inter-
national Conference on Mobile Business, Greece, July 2002.

72 m Context-Aware Pervasive Systems

Kourouthanasis, P., Spinellis, D., Roussos, G., and Giaglis, G., Intelligent cokes and
diapers: Mygrocer ubiquitous computing environment, Proceedings of the 1st
International Mobile Business Conference, July 2002, pp. 150-172.

Leeper, D.G., A long-term view of short-range wireless, IEEE Computer 39—-44, June 2001.

Loke, S.W., Modelling service-providing location-based E-communities and the impact
of user mobility, Proceedings of the 4th International Conference on Distributed
Communities on the Web (DCW 2002), Plaice, J., Kropf, P.G., Schulthess, P.,
and Slonim, J., Eds., April 2002, Sydney, Australia, Springer-Verlag, Lecture
Notes in Computer Science 2468, pp. 266-277.

Loke, S.W., An exploration of agent assistance for physical marketplaces: proximity-
based reverse auctions, Proceedings of the International Conference on Intel-
ligent Agents, Web Technologies and Internet Commerce — IAWTIC2003,
Mohammadian, M., Ed., February, 2003, Vienna, Austria, pp. 124-135.

Loke, S.W. and Zaslavsky, A., Integrated ambient services as enhancement to physical
marketplaces, Proceedings of the HICSS-37 Minitrack on Mobile Distributed
Information Systems, January 2004.

Loke, S.W., Zaslavsky, A., and Jain, B., Wireless marketing of ephemeral personal
goods: the case of auctioning screen estate for wireless advertisements, Pro-
ceedings of the 3rd International Workshop on Wireless Information Systems,
WIS 2004, in conjunction with ICEIS 2004, Porto, Portugal, 2004, INSTICC Press,
pp. 127-133.

Loke, S.W., Krishnaswamy, S., and Naing, T.T., Service domains for ambient services:
concept and experimentation, Mobile Networks and Applications (MONET) —
special issue on mobile services 10, 2005, Springer Science+Business Media,
Inc., pp. 395-404.

Maamar, Z., Yahyaoui, H., Mansoor, W., and Vd Heuvel, W.-J., Software agents and
wireless E-commerce, ACM SIGecom Exchanges 2(3), 10-17, 2001.

Newell, F. and Newell, K., Wireless Rules: New Marketing Strategies for Customer
Relationship Management Anytime, Anywhere, McGraw-Hill, New York, 2001.

Pilioura, A., Tsalgatidou, S., and Hadjiefthymiades, S., Scenarios of using Web services
in M-commerce, ACM SIGecom Exchanges 3(4), 28-36, 2003.

Poslad, S., Laamanen, H., Malaka, R., Nick, A., Buckle, P., and Zipf, A., CRUMPET:
Creation of userfriendly mobile services personalized for tourism, Proceedings
of 2nd International Conference on 3G Mobile Communication Technologies,
2001, pp. 26-29.

Rakotonirainy, A., and Loke, S.W., and Zaslavsky, A., Towards multi-agent support for
open mobile virtual communities, Proceedings of the International Conference
on Artificial Intelligence (IC-AI 2000), Vol. 1, Arabnia, H.R., Ed., Las Vegas, NV,
2000, CSREA Press, pp. 127-133.

Rheingold, H. Smart Mobs: the Next Social Revolution, Perseus Books Group, U.S.A., 2002.

Singh, M. and Huhns, M.N., Service-Oriented Computing: Semantics, Processes, Agents,
John Wiley & Sons, U.S.A., 2005.

Singhal, S., Bridgman, T., Suyranarayana, L., Manuey, D., Chan, J., Bevis, D., Hild, S.,
and Alvinen, J., The Wireless Application Protocol: Writing Applications for the
Mobile Internet, Addison-Wesley, Longman, 2001.

Stolze, M. and Strobel, M., The shopping gate — enabling role- and preference-specific
e-commerce shopping experiences, in Web Intelligence: Research and Devel-
opment, Zhong, N. et al., Eds., Lecture Notes in Artificial Intelligence, Vol. 2198,
Springer-Verlag, Germany, 2001, pp. 549-561.

Context-Aware Mobile Services ® 73

Syukur, E., Cooney, D., Loke, S.W., and Stanski, P., Hanging services: an investigation
of context-sensitivity and mobile code for localized services, Proceedings of
the IEEE International Conference on Mobile Data Management, Berkeley, CA,
2004, pp. 62-73.

Syukur, E., Loke, S.W., and Stanski, P., A policy based framework for context aware
ubiquitous services, Proceedings of the Embedded Ubiquitous Computing Con-
Sference, Aizu-Wakamatsu, Japan, August 26-28, 2004a, Springer-Verlag, Lecture
Notes in Computer Science, LNCS 3207, pp. 346-355.

Syukur, E., Loke, S.W., and Stanski, P., Performance issues in an infrastructure for
mobile hanging services, Proceedings of the First International Conference on
Mobile Computing and Ubiquitous Networking (ICMU), NTT DoCoMo R&D
Center, Yokosuka, Japan, 2004b, pp. 32-37.

Tewari, G., Youll, J., and Maes, P., Personalized location-based brokering using an
agent-based intermediary architecture, in Proceedings of the International Con-
ference on E-Commerce, Seoul, Korea, 2000.

Toye, E., Sharp, R., Madhavapeddy, A., and Scott, D., Using smart phones to access
site-specific services, IEEE Pervasive Computing 4(2), 60-66, 2005, IEEE Com-
puter Society Press.

Troel, A., Banatre, M., Couderc, P., and Weis, F., Predictive scheme for proximate
interactions, Proceedings of the International Workshop on Smart Appliances
and Wearable Computing (IWSAWC’01), April 2001, pp. 235-239.

Varshney, U. and Vetter, R., Mobile Commerce: Framework, Applications and Network-
ing Support, Mobile Networks and Applications 7, 2002, pp. 185-198.
Wagner, M., Balke, W.-T., and Kielling, W., An XML-based multimedia middleware
for mobile online auctions, in Filipe, J., Sharp, B., and Miranda, P., Eds.,
Enterprise Information Systems III, Kluwer Academic Publishers, The Nether-

lands, 2002, pp. 259-269.

4

CONTEXT-AWARE ARTIFACTS

In this chapter, we review examples of context-aware artifacts, including
everyday obijects, appliances, and handheld devices, and how they can
be made context aware. Other labels for context-aware artifacts include
the terms sentient and smart, describing objects. We discuss the concepts
of self-supported context awareness and infrastructure-supported context
awareness, and how the functionalities of sensing, reasoning, and initi-
ating actions might be distributed between artifact and infrastructure. We
also explore in detail an example of a software system for context-aware
mobile phones.

4.1 AWARE OBJECTS

An exciting development in context-aware computing is aware objects,
aware everyday appliances, and aware devices. The excitement of seeing
a robot perform human-level tasks such as walking or playing table tennis
can perhaps not be too far behind that of seeing a soft toy effectively
come alive, responding and reacting to its user’s handling context, or
hearing warm greetings from your television or favorite teddy as you
come in through the door. Consider walking through shelves of appliances
in a departmental store and hearing some of these appliances try to
introduce and market themselves as you come near or touch them; imagine
cell phones automatically behaving in the right way under the right
circumstances, whether in a meeting or a noisy marketplace, or, say, if
the call is urgent. In fact, Gatenby (2005) describes a system that detects
a user passing near a shelf of books and, with the help of a user profile,
sends SMS messages about possibly interesting books on the shelf to the
user’s phone. Other books on the shelf nearby related to the one being
picked up by the user can also light up (the books have small lights
attached to them); the books effectively recommend themselves to the

75

76 ®m Context-Aware Pervasive Systems

user. Context-aware behavior in devices, appliances, and everyday objects
are an emerging new experience.

A context-aware artifact is able to perceive the situation of a user and
reacts sensibly to it. Two approaches to context-aware artifacts have been
identified by Loke (2006):

Self-supported context awareness, in which an artifact is enhanced
with hardware (and perhaps software) having the ability to perceive
context and utilizes context in its behaviors.
Infrastructure-supported context awareness, in which a device or
artifact acquires context-aware capabilities by utilizing hardware
and software infrastructure external to the artifact. The infrastruc-
ture might be associated with the environment of the artifact and
shared by other artifacts and applications.

Self-supported context-aware everyday objects and digital devices
involve sophisticated versions of the original artifacts, attached with hard-
ware and software to enable the artifacts to perceive the user or the
environment, and include the following:

A wheelchair with hardware to aid interaction between the user
and the environment (Salvador et al., 2005).

Dietary-aware dining table augmented with sensors to monitor
movement of food on the table (Chang et al., 2006).

Smart couch,! which, equipped with weight sensors, determines
the weight of the person, identifies him or her, figures how much
he or she is moving, and perceives the approximate position of
the person on the couch.

Chairs with sensors to detect a person, sitting or not, and his or
her orientation (Nakajima et al., 2005).

Chameleon tables (Selker et al., 2002) embedded with sensors so
that they know where they are being used, how they are being
used, when they are being used, and who is using them.

A tablecloth (from the Equator project,? which works on responsive
electronic furniture) that can signal how long things have been
left on it.

The smarttable, which has a grid of tabletop sensors to locate and
identify objects (e.g., children’s blocks in the intended kindergarten
application) on its surface (Steurer and Srivastava, 2003).

U http://www.dsg.cs.ted.ie/index.php?category_id=350.
2 http://www.equator.ac.uk.

Context-Aware Artifacts ® 77

B The sensetable® (Patten et al., 2001), which can sense and track tagged
objects (with physical dials to change their states) on its surface.

B Shelf with pressure sensors to detect out-of-stock retail levels
(Metzger, 2005).

B Smart furniture, each article with possibly different sensors to detect
user activities and hardware to provide access to Internet services
for users (Ito et al., 2003).

B Toothbrush and mirror combination with sensors (accelerometer)
to detect usage (e.g., proximity of toothbrush with mirror, position
of toothbrush with respect to mirror, and state of the toothbrush)
(Fujinami et al., 2005).*

B The mediacup using temperature and motion sensors to detect the
cup’s situation such as cup is stationary, drinking out of the cup,
cup is played with, cup is carried around, cup is filled up, drink
has cooled off, and the current temperature (Beigl et al., 2001).5

B The chameleon mug® under development at MIT, which seeks to
change color, display safety messages, and spring a handle if the
fluid in it is hot.

B A plastic pill bottle equipped with RFID tags read by a reader
connected to a computer that can be used to sense the pill bottle
— alerting the user, if the bottle has not been lifted off its stand,
that possibly the person has not taken the medication (Agarawala
et al., 2004); a similar idea is the medication uptake sensors and
alerts that, depending on where the user is located, are used in the
context-aware medication-reminding system (Mihailidis et al., 2003).

B The intelligent spoon at MIT, with embedded sensors,” which
“seeks to provide information, in an integrated manner, about any
food the spoon is in contact with, and to offer suggestions to
improve the food. The spoon is equipped with sensors that measure
temperature, acidity, salinity, and viscosity, and is connected to a
computer via a cable.”

B Smart sink, which can interpret users’ tasks (as perceived via a
camera) at the sink to provide hands-free control of temperature
and water flow, and up+down sink, which uses a camera to find
a person’s head to adjust its height (Bonanni et al., 2005).

B Context-aware doll, which can emit different sounds and music
according to its situation and how it is handled; it uses a combi-
nation of 16 built-in sensors including touch sensors, bend sensors,

3 http://web.media.mit.edu/~jpatten/sensetable.html.

* The Sentient Materials Group is http://smg.dcl.info.waseda.ac.jp/website/home.php.
> http://mediacup.teco.edu/.

¢ http://www.media.mit.edu/ci/projects/chameleonmug.html.

7 http://www.media.mit.edu/ci/projects/intelligentspoon.html.

78 m Context-Aware Pervasive Systems

a camera, a microphone, an accelerometer, and two infrared prox-
imity sensors (Yonezawa et al., 2001).

The context-aware camera (Hakansson et al., 2003),® which can
sense sounds, pollution in the air, temperature and smell, and
create visual effects in photographs given its context.

SensVest (Knight et al., 2005), worn during different sporting
activities has sensors to measure physiological data such as move-
ment (via accelerometers), energy expenditure, heart rate (using
electrodes to detect electrical signals that stimulate heart beats),
and temperature.

Context-aware mobile phones.

There has been much work on mobile phones with context-aware
capabilities, including self-supported and other infrastructure-based imple-
mentations. Self-supported context-aware phones include:

Sensay (Siewiorek et al., 2003), which, based on sensory informa-
tion, can automatically perform operations on the phone such as
the incoming call alert mode, send an SMS to the caller, or provide
access to the electronic calendar.

The TEA project (Gellersen et al., 2002),” which attaches a hardware
plug-in comprising sensors such as light sensors, microphones, an
accelerometer, a skin conductance sensor, and a temperature sen-
sor, and can detect situations of the phone such as “in hand,” “on
table,” “in pocket,” and “outdoors.”

Work by Nokia Research (Himber et al., 2001) which studied time-
series segmentation of sensor data collected using a sensor box in
a mobile phone to recognize situations such as “user sits,” “device
is on a table,” “user stands up and starts to walk,” “user walks in
a corridor,” and “user walks outside.”

Tuulari’s Sensor Box (2000) — a prototype system using a sensor
box containing sensors for acceleration, temperature, humidity,
light, and conductance to implement rule-based behaviors such as
“if the phone rings and it is picked up, it should stop ringing.”
The MIThril Context-Aware Cell Phone Project,'® which uses sensors
such as a GPS receiver, an accelerometer, IR tagging, and micro-
phone to help determine the location and activity of the user.
ContextPhone (Raento et al., 2005), a software platform comprising
C++ libraries that implements context-aware capabilities for phones

8 http://www.viktoria.se/fal/projects/photo/context.html.
° http://www.teco.edu/tea/.
10 http://www.media.mit.edu/wearables/mithril/phone.html.

Context-Aware Artifacts ® 79

using Symbian OS and the Nokia Series 60 Smartphone platform.
ContextPhone comprises modules for sensing (supporting location
information as returned by GSM cell IDs, phone information such
as charger status and alarm profile, communication behavior such
as calls, call attempts and SMS content, and optical marker recog-
nition using a built-in phone camera), communications (using
Generalized Packet Radio Service (GPRS), Bluetooth networking,
SMS or MMS messaging), customized applications, and system
services (e.g., error logging and recovery).

Specialized devices have also been developed, such as the “Hello.Wall”
of the Ambient Agoras project (Prante et al., 2004), which displays different
patterns to communicate messages to different audiences according to
different situations of the audience.

Smart clothing is also an active area of research, including wearable
computers embedded in clothing, and specialized clothing such as a
raincoat that responds to rain, a dress with panels that rearrange according
to time. Gershenfeld (1999) talks about smart artifacts including smart
shoes, and research by the Things That Think Consortium.!!

Skramstad (2002) defines the notion of augmented objects as “appli-
ances whose meaning or functionality is changed or enhanced through
computational power.” Examples given include a café table that displays
community content appropriate to the café it is located in and lamps that
change appearance according to climate and traffic within the building.

Everyday objects can be augmented with context awareness, and,
perhaps, new kinds of artifacts will have everyday use, artifacts that we
have not yet seen or conceived; just as the era before the car, this is now
the era before X, where X is still unknown.

There could be different implementations of the same concept of a
context-aware artifact; i.e., the same artifact can be context-aware in
different ways, different kinds of contextual information can be used, or
the same contextual information can be acquired in different ways. Also,
larger objects such as cars can be equipped with sensors (e.g., Vidales
and Stajano, 2002) — as is increasingly done in modern cars, with light
sensors for headlights and rain sensing for wipers.

Sensors added to artifacts aid in obtaining information about the
situation the artifact is in, in the sense of perceiving situations from the
point of view of the artifacts themselves. For example, a light sensor
attached to a cup detects light according to different situations in which
the cup is used. Similarly, a touch sensor attached to a soccer ball will
be able to sense impacts on the ball from the ball’s perspective. Hence,

1 http://ttt. media.mit.edu.

80 m Context-Aware Pervasive Systems

such sensors attached to self-supported context-aware artifacts can acquire
some kind of contextual information, not otherwise obtainable.

However, there are limitations in the number and type of sensors that
can be attached to an artifact, and the use and design of the artifact itself
might not facilitate such endowment of sensors to acquire needed con-
textual information. Moreover, artifacts might have very limited computa-
tional and networking capabilities; this limits the extent of reasoning with
sensory information and prevents the artifact from connecting to Internet
resources to acquire information (e.g., getting the weather report).

A different approach utilizes a hardware and software infrastructure
external to the artifact. Such infrastructure-supported context-aware arti-
facts are liberated from what can be done with the artifact itself. To
recognize the situations that a cup can be in, a whole collection of sensors
can be used, and complex reasoning can be achieved with an infrastruc-
ture that “observes” the cup and its situations from “outside” the cup.
The idea shifts from the artifact perceiving situations to an external party
perceiving situations related to the artifact. However, a combination of
sensors on the artifact and the external infrastructure can be employed.
The infrastructure-supported approaches help in the sharing and man-
agement of contextual information for different context-aware artifacts
and applications.

Hong and Landay (2001) defined infrastructure as “a well-established,
pervasive, reliable, and publicly accessible set of technologies that act as
a foundation for other systems.” According to Langheinrich et al. (2000),
“an infrastructure for smart things should not only consist of an architecture
to represent objects and events, but also provide various services. Smart
things (or their virtual proxies) may need location information; they want
to discover services in their physical proximity, and they may want to
communicate to other (possibly remote) physical objects.” Sensing, reason-
ing, and acting can be distributed between the artifact and infrastructure.

The Aml infrastructure (Anastasopoulos et al., 2005) that is being
developed was illustrated for implementing an intelligent refrigerator. This
refrigerator provides services for needy persons as well as care personnel,
a key feature of the refrigerator being sensors for monitoring the door
state (open or closed), the temperature within the refrigerator, the content
state (i.e., whether food items have expired), and whether food items are
inside or outside the refrigerator (done by RFID tagging of items and
checking their presence using RFID readers). Software and underlying
networking infrastructure can connect a mobile device with the refrigerator
sensors, so that alerts concerning the monitored events can be issued
visually or sounds generated, or even sent to the mobile device (e.g.,
food has expired, or the refrigerator door is left open).

Context-Aware Artifacts ® 81

Another approach, whether an infrastructure is used or not, is to
consider collections of context-aware artifacts (e.g., Kameas et al. (2003)
and Kumar et al. (2003)). Such collaboration between smart objects can
be very useful as one can piece together context as perceived by each
of the artifacts, and such integrated information can provide a bigger
picture of the situation related to several artifacts. For example, media-
cups and doorplate sensors can be linked to infer a meeting (Gellersen
et al., 2002). Your sunglasses can call out to you if they notice that you
have not taken them along, given that they know the latest weather
report, and also inform the cupboard to remind you to bring along suntan
lotion, given that they know your possible destination. Personal Area
Networks (or PANs, for short) have been proposed as a means to connect
a collection of devices (using Bluetooth as the underlying technology).
Such collections may be artifacts worn on a user, contained in a wallet,
collocated on a table, contained in a cupboard, distributed in the home,
situated in the living room, or hung on the same wall. One can imagine
interesting possibilities for collections of context-aware artifacts. Siege-
mund (2004) discusses cooperative smart objects and artifacts in depth,
proposing a distributed tuple space model for sharing context informa-
tion, formed by computational nodes located in a number of smart
objects. Rules can be written to retrieve information from the distributed
tuple space or to add information. Bluetooth is one possible technology
for networking the nodes, supporting the tuple space abstraction.

The smart virtual counterpart (Dubendorfer, 2001) is a paradigm for
associating physical real-world objects with virtual software objects. Each
physical object can be associated with a virtual object or a collection of
objects (e.g., a pack of compact disks) can be associated with a virtual
meta object. The association can be done via RFID sensors and by
addressing each physical object or collection of objects via a unique ID.
The virtual object can receive, process, and store events related to the
object (e.g., an object coming within range of the object — called the
sighting of the object — or the object’s going outside the range of a
sensor), including a history of its uses, and can interact with other virtual
objects. It is useful to quote Dubendorfer:

A book might inform us when a new edition has been pub-
lished, show the latest list of errata to us when we hold it close
to a screen and suggest further reading. It could also tell how
long we have spent reading it and which other books have
been standing close to it on the shelf ... A personal toy could
tell us about when it was on holidays with us, which hotel we
visited, and which people we met there.

82 m Context-Aware Pervasive Systems

Table 4.1 Possible Distributions of Functionality for a
Context-Aware Artifact

Architecture Sensing Reasoning Initiative for Actions
1 On artifact On artifact From artifact
2 On artifact On artifact From infrastructure
3 On artifact On infrastructure From artifact
4 On artifact On infrastructure From infrastructure
5 On infrastructure On artifact From artifact
6 On infrastructure On artifact From infrastructure
7 On infrastructure On infrastructure From artifact
8 On infrastructure On infrastructure From infrastructure

4.2 ARCHITECTURAL DESIGN SPACE FOR A
CONTEXT-AWARE ARTIFACT

Given an artifact, and considering that a context-aware capability is
generally implemented via the three stages of sensing, reasoning about
sensed information, and then initiating actions based on the reasoning,
we can map out the different ways to implement context awareness for
the artifact. A simple analysis of possible combinations is shown in Table
4.1, which summarizes eight possible architectures for adding context
awareness to the artifact, depending on where the main processing for
each stage might be physically located, either on (or augmenting) the
artifact or external to the artifact, i.e., considered to be on the infra-
structure side (e.g., running in a computer separate from the artifact).
Architecture 1 is typical of the self-supported approach in which all
three stages are done on the artifact or in hardware (and software)
augmenting the artifact. Architecture 8 is typical of the infrastructure-
supported approaches in which all three stages are performed on the
infrastructure side. For example, the infrastructure employs a camera
(considered to be on the infrastructure side) to determine the position
of an object (with functionality exposed as Web services) and other
entities near it, and then, according to the location of the artifact and
what is nearby, makes Web service calls to adjust the functionality of
the object.

Architectures 2 to 7 involve a mix of infrastructure-supported and self-
supported artifact capabilities. Architecture 2 would perform sensing and
reasoning on the artifact and then pass the results to the infrastructure to
decide on what and how to act. This is useful if the infrastructure is
coordinating a collective response of several artifacts, based on the rea-

Context-Aware Artifacts ® 83

soned information assembled from different artifacts. Architecture 3 would
involve sensing on the artifact, passing the sensed data to the infrastructure
for processing and reasoning, and then handing the results back to the
artifact, which then decides and initiates appropriate actions. This is helpful
if a powerful reasoning engine is used to interpret sensed data, perhaps
in combination with other knowledge bases, and shared among artifacts,
thereby relieving the artifact from having to be augmented with powerful
computational resources. However, the artifact retains the responsibility
to decide what to do, using the reasoned information fed to it by the
infrastructure. Architecture 4 would employ sensors on the artifact and
pass the sensor data to the infrastructure to reason and act upon. Compared
to Architecture 3, the artifact relinquishes its responsibility to the infra-
structure to decide and initiate actions. Architecture 5 would perform
sensing via the infrastructure using sensors external to the artifact and
then pass that sensor data to the artifact, which then reasons with it and
finally decides what to do. This style is useful for an artifact with little or
no sensing capabilities itself and is fed sensor information by the infra-
structure. Architecture 6 would allow only the reasoning to occur on the
artifact, which is useful to enable artifacts with their own reasoning
capabilities; in this case, only reasoning is distributed to the artifacts.
Architecture 7 would only inquire of the artifact what to do based on
sensed and reasoned information, passing to the artifact the responsibility
to decide what to do.

A distribution of functionality is also possible, for example, where
sensing is done partly on the artifact and partly via the infrastructure;
i.e., the artifact might decide what to do via its own sensors and via
sensed information from other sensors connected to the infrastructure.
Also, the artifact might negotiate with the infrastructure on what is the
best course of action. We have only considered one artifact in the
aforementioned analysis. In a space with multiple artifacts of different
capabilities, different architectures might be employed for context-aware
capabilities of different artifacts.

The sophistication of the context-aware behavior and responses would
depend on the sophistication of the sensing technology used, the reasoning
employed, and the actions permitted. These are not independent; for
example, the reasoning component will need to be modified if new sensors
that provide new kinds of sensed information are added.

A number of infrastructures and toolkits for context-aware computing,
which can be used for different applications, have been developed,
including those by Biegel and Cahill (2004), Henricksen and Indulska
(2004), and Dey et al. (2001), as well as the ContextBroker (Chen et al.,
2004). Others have been mentioned in Chapter 2. These infrastructures
can be used with artifacts to endow them with context-aware behavior.

84 m Context-Aware Pervasive Systems

4.3 CONTEXT-AWARE MOBILE PHONES: AN ILLUSTRATION

We consider the concept of context-aware mobile phones in more detail
in this section, because mobile phones are widespread and there has
been much activity in this area. We have already seen examples of self-
supported context-aware mobile phones. Other work such as the Situ-
AwarePhone (Wang et al., 2004) uses an ontology-based approach to
recognize and reason with context, using a supporting infrastructure. The
context-aware phone in Connelly and Khalil (2004) utilizes an infrastruc-
ture representing the space in which the phone is situated, and considers
how the space and phone would negotiate in determining suitable actions
on the phone, such as setting the phone to silent mode in the context
of a lecture. In the following detailed framework for context-aware mobile
phones, we explore further this notion of space control over the phone,
whether for compliance reasons (where the phone should abide by some
policy concerning phone usage and behavior) or for convenience reasons
(where the actions can be carried out on the phone automatically,
reducing user intervention).

4.3.1 Overview of a Framework for Context-Aware Mobile Phone
with User Preferences: The CAMP-UP System

CAMP-UP is an example of a system for context-aware control of mobile
phones in which the level of access (from external parties) to phone
functionality can be adjusted, based on the context and user preferences.

The architecture of the system comprises a server side and a client
side (user side), and two classes of users are considered: the device
(mobile phone) user and the space administrator. The concept of space
and device follows Connelly and Khalil’s design (2004). Correspondingly,
there are two types of interactions we must consider as depicted in
Figure 4.1:

B Interaction between the user and his or her mobile phone, where
the user sets his or her preferences for the device. The user can
set via his or her device the type of functionalities (e.g., vibration
and phone power) that the user wants exposed and to be con-
trollable by external parties when in different contexts. User pref-
erences are recorded in a database on the device.

B Interaction between the space administrator and the Space Manager
component of the system. The space administrator defines a space
policy, which is a set of rules that determines certain device
functionalities to be set to certain modes based on current context.
Space policies are added to a database on the space server.

Context-Aware Artifacts ® 85

Device Space
Space
Phone > I
Manager |« Manager

Ol
Preferences @
Update user

preferences @ Set the Update space

Policy policy

Functionality
Database

6\70 M Policy

Database

Space

Devi
evice Admin

User

Figure 4.1 User interactions for the CAMP-UP system.

4.3.2 CAMP-UP System Interaction

The CAMP-UP system comprises two essential entities: space and device
(mobile phone). Figure 4.2 illustrates the CAMP-UP system architecture.
The figure uses arrows to represent the actions by the source component
on the destination component. There are 14 steps of interactions. We
provide an overview as follows.

In the first step, the Space Manager identifies that a device has entered
the space, and the space sends context information, such as a label for
the space’s location and a description of the space’s current activity, to
the device. At the same time, the space also asks the device for the set
of functionalities that it is exposing to the space, given the context
information. A device is said to expose a functionality (e.g., ringer volume,
vibration) if it allows the SpaceManager to have control over that particular
functionality (e.g., allows the space to set the ringer volume to certain
leveD. In Step 2, the Phone Manager passes the context information it
received from the space to the Context Aggregator. The context database,
in which all the context information is stored, is also updated (Step 3).
Context information is also passed to the Context Interpreter to derive
higher-level context information, which is also then stored in the context
database. When the derived context information has been inferred and
updated in the database, the Phone Manager in Step 6 gets the derived
context information from the database.

86 m Context-Aware Pervasive Systems

Device Space
Send context

information and
ask for the set of

@ exposed
functionalities
Phone <

Manager Send a message to

phone asking to
set functionalities

to certain modes

SpaceManager

s d
Set the N -
Send the set of
mode . e
functionalities
that are
exposed

Query
functionalities

Update context
information
that need to be
A 4 set for current

Context @ Context activity

Aggregator Updatel Database
context

@ Derive new A 4 @
higher level
context Policy Tpdate
y @ Controller required
Context functionalities

Interpreter Set derived
context

Match the
@ device
exposed
functionalities
with space
required
functionalities

Functionality

Update Query set of
exposed Database functionalities
functionalities exposed based
on derived
context Policy

Database

Phone Mode

A\ 4

Figure 4.2 Architecture of the CAMP-UP system.

In Step 7, the Phone Manager uses the derived context information as
parameter in a query to retrieve the set of exposed functionalities from
the functionality database, and the response is obtained in Step 8. This
response is sent back to the Space Manager as a response to the Space
Manager’s query in Step 1. Subsequently, in Step 10, the Space Manager
determines the set of functionalities that need to be set for the current
space’s activity, by consulting the space policy. In Step 11, the Policy
Controller component tries to match the device’s exposed functionalities
with space required functionalities, based on the space’s current policy.

Context-Aware Artifacts ® 87

As we discussed before, the space policy is a set of rules that determines
what device functionalities are to be set to what modes, based on the
space’s current context. In Step 12, the Policy Controller updates the Space
Manager with the required functionalities. Consequently, in the next step,
the SpaceManager sends a message to the phone asking to set function-
alities to certain modes. In the last step, the phone manager sets the
phone to certain modes, based on the space requirements.

4.3.2.1 On the Space Side

Space Manager is the main software component that is responsible for
discovering new devices that enter the space and devices that leave the
space. When the device enters the space, the Space Manager will initiate
a new connection with the client and send the current context information
to that particular client.

There are two basic types of context information that the Space
Manager would send to its client:

B Location
B Activity

Location is the required context information that the Space Manager
has to send to the device to permit the CAMP-UP architecture to work.
Context location means the current location of the Space Manager, which
is fixed for every Space Manager (e.g., home, car, room). The second type
of context is the activity context that represents the current actual activity
within the space. There are two different ways to attain the space’s activity
context. The first (preferable) method will be the current activity derived
from an activity schedule. The scheduled activity will become the space’s
current activity if the time of scheduled activity matches with the current
time. The second method is used when the space has its own context
aggregator and context interpreter, as well as sensors to determine the
current activity occurring within the space.

Apart from sending the context information, the Space Manager will
ask for the set of exposed functionalities from any device that is currently
in the space area and connected to the Space Manager. This set of
functionalities will be those the Space Manager will have control over.

Space control over device functionality can be viewed from two
different perspectives. The first is space control of device functionality for
compliance reasons. This is when the device has no right not to follow
the space policy. A scenario, for example, will be when the device is in
the hospital or air plane where all the devices have to be turned off for
safety purposes. The second is space control of device functionality for

88 m Context-Aware Pervasive Systems

the convenience of the user. This is when the device has the right not to
comply with the space policy. For example, when the user is watching a
movie in a cinema, the device has the right not to follow the space policy,
which is to silence the mobile phone, but it is convenient for the phone
to be automatically set to the silent mode. Following receiving the set of
functionalities from the device, the Space Manager will send a message
to the device asking it to set the functionalities to prescribed modes based
on the space policy.

Policy controller is a software component whose main purpose is to
perform a comparison to match the set of exposed functionalities sent by
the device with the space-required functionality based on the space’s
current policy. For example, the device sends a set of exposed function-
alities, which includes ringer, vibration, and Internet connection, and the
space’s current policy requires control over the ringer and Internet con-
nection; this case is a match. But it is possible that the device might send
a set of functionalities that do not match with the space’s current policy.

The policy database is a storage component that stores the space policy
for each particular type of space activity. The space policy identifies the
required settings on the device functionalities based on the space’s current
activity. For example, we can have a rule such as “when the space’s
activity context is lecture, every mobile phone is required to be silent and
set to vibration off mode.”

4.3.2.2 On the Client Side

To support context awareness and user preferences, the mobile phone
has five components:

Phone Manager
Context Aggregator
Context Information
Context Interpreter
Functionality Database

DAl e

Similar to the Space Manager, the Phone Manager is the main software
component that controls the mobile phone interaction with the Space
Manager. The four tasks of the Phone Manager are as follows:

1. Establish and maintain the connection with the Space Manager
Update the context aggregator whenever there is new context
information received from the space

3. Send the set list of functionalities that are exposed from the phone
to the space, given the context information from the space

Context-Aware Artifacts ® 89

4. Update the phone mode when the Space Manager sends a message
requiring functionalities to be set to a certain mode based on the
space policy

The Context Aggregator is a software component that gathers the context
information. Apart from context information from the Space Manager, the
context aggregator may gather context information from other sources as
well, such as the device’s calendar that resides in the phone itself or other
sensors attached to the phone. Every piece of context information that the
context aggregator attains is recorded in the Context Database. Whenever
there is new context information or a context change, the context aggregator
asks the context interpreter to derive new high-level contexts.

The information stored in the Context Database can be low level context
information, such as location (e.g., bathroom, hotel, and restaurant) or
space’s current activity (lecture, meeting and conference, dinner). In addi-
tion, the information can be at a higher level, such as “lecture at Monash
University” and “meeting with supervisor,” derived using the inference
engine, which is the Context Interpreter. The Context Database information
is updated whenever the context aggregator receives new context informa-
tion. For example, when the device enters the conference room, the Space
Manager sends new scheduled information about the space’s current activity
(e.g., board meeting). The Context Aggregator then updates the Context
Database with the new context information about the user and space.

The functionality database is another storage component on the client
side system. The functionality database stores data of associates’ phone
functionalities for each level of exposure and rules that map situations (or
derived context in this case) to levels of exposure.

The ability to programmatically change the modes on a phone depends
on the application programming interface (API) available for the phone.
For instance, the Java Telephone API (JTAPD,'? is a variation of the
PersonalJava application environment, and it is a J2ME (Java 2 Microedi-
tion) API for the design, development, and deployment of MIDP Java
applications for cell phones, including Wireless Application Protocol (WAP)
and i-Mode. JTAPI provides a number of methods that could be used to
adjust the functionalities’ settings, such as the setRingerVolume() method
in the PhoneRinger class, which would set the ringer volume of the phone.
There are a number of other phone APIs available based on the phone
manufacturer and model. For example, the Nokia 3410 SMS API enables
sending and receiving of GSM short messages from and to J2ME MIDP
applications. The methods we could use are the send(Message msg) and
receive() in the MessageConnection class. The API is based on the Generic

12 http://java.sun.com/products/jtapi/.

90 m Context-Aware Pervasive Systems

lzuccessfully connected to ‘'127.8.8.1:7777' as a MohileClient.

I5pace Sending new information as Follow:

[Space Info Type: context . .
High level derived
[ContextType :© Activity context

iContextInfo = Sleeping

[ContextType : Location

[ContextInfo = H .
ontextinte one Two different types of

: SleepingfitHome information being
iCurrent Exposed Level: Level 4 received from the
| space:

ending the Following Punctionality to Space P N
U ibeation 1. Space’s context
i Camera information
2. Space’s required
unctionality information has been sent. mode
I5pace Sending new information as Follow:
fepace Info Type: mode
‘pace Azking the Mode to be set as follow:
The set of

Ftolﬁgt::n;ahty * Ringer functionalities that

are exposed for the
current derived
context

unctionality : Uibration

Figure 4.3 Device send and receive information.

Connection Framework (javax.microedition.io package) that is used for
I/O and networking functionality in the J2ME profiles. In the future, there
could emerge a comprehensive API, enabling automatic control over
phone functionalities — such an API can be a concern from the security
perspective, and so, its use requires careful regulation (technical means
or otherwise).

4.3.3 Prototype and Discussions

The CAMP-UP system was implemented using a PocketPC (simulating a
mobile phone) and a desktop PC (simulating the space server). Figure
4.3 shows text debug messages from the prototype system. The screen
shot shows context information being sent to the device, followed by a
return in the level of exposure to the space (which in this case is level
4), and the space, in turn, setting the ringer volume to 2 and turning the
vibration mode on.

The derived context shown in Figure 4.3 is deduced by using simple
rules such as the following (more sophisticated reasoning can alternatively
be employed):

IF (home) THEN
IF (sleeping) THEN

setDeriveContext (sleepingAtHome)

Context-Aware Artifacts ® 91

IF (studying) THEN
setDeriveContext (studyingAtHome)
IF (showering) THEN

setDeriveContext (showeringAtHome)

The interface for the client side of the CAMP-UP system has two
main features in its main menu. The first one is the feature to set the
level of exposure for different types of context. The second is to allow
the user to associate different phone functionalities for different levels
of phone exposure. Figure 4.4 shows the interface for the two main
client features.

As illustrated in Figure 4.5, each recognized context in the CAMP-UP
system is mapped to a different level of exposure. For example, home
context has exposure level 5 and sleeping at home context has exposure
level 4. This means that the device will expose the functionalities (e.g.,
power, vibration, etc.) that are included in level 4 to the home Space-
Manager if given the sleeping-at-home context.

With the current client interface, there are seven levels of functionality
exposure. The number of default levels depends on the number of
different functionalities that the phone has, and the levels could corre-
spond to levels of obtrusiveness to the user so that the user associates
how obtrusive the phone should be in different situations. The user will
only have the capability to view the functionalities that are exposed for
a given level of exposure as shown in Figure 4.0.

5 ven -[2[x

Please select from the following menu:

| J_ Context - Level of E:é_pusure |

| 2. Functionality Lewvel |

Figure 4.4 CAMP-UP client main menu.

92 m Context-Aware Pervasive Systems

El=] ¥

Context Level

Car-Level 2
ConferenceAtMonashLectureTheater-...
Driving-Lewvel 2

Home-Level 5
LectureAtMonashLectureTheater-Lew...
MonashUniversity-Level 4
SeminarAtMonashLectureTheater-Lev..,
ShowerAtHome-Level 3
SleepinnAtHome-Level 4

loption| | ok | | Back

Figure 4.5 Context — level of exposure.

itz o

Level 1

[l Power

[¥] Phone Call

[l SMS

[¥] Internet Connection
[¥] Ringer

[video / Camera

[vibration

|Setlect | | ok | | Back |

Figure 4.6 Exposed functionalities for level-1 exposure.

Context-Aware Artifacts ® 93

Table 4.2 A Summary of Scenarios Discussed

Number of Number of Number of
Exposed Required Matched Compliance or
Scenario Functionalities Functionalities Functionalities Convenience

1 2 2 2 Convenience
2 7 1 1 Compliance
3 1 2 1 Convenience
4 1 2 1 Compliance
5 1 2 0 Convenience
6 6 1 0 Compliance

4.3.4 Scenarios

A variety of scenarios are used to illustrate the different situations that a
mobile phone might encounter in the real world. Table 4.2 summarizes
six scenarios, in terms of the number of exposed functionalities, the
functionalities required of the space, the number of matched functionalities
between the exposed and required functionalities, and the main purpose
of space control (compliance or convenience as explained later).

Scenario 1: User Attending Lecture in Monash Lecture Hall

A student of Monash University is attending a lecture in the
lecture hall.

Space Policy

Monash University advises that all the mobile phones should
be switched to silent mode during the lecture and tutorial time.

User Preference

The student would like a customized level of exposure. Based
on user preferences, that is “customized 3,” there are two
functionalities exposed in this context, which are the ringer and
vibration settings as shown in Figure 4.7.

94 m Context-Aware Pervasive Systems

Customised 3 [comewiew |
(o Power Car-Level 4
[l Phone Call ConferenceAtMonash.Level 2
] SMS Driving-L evel 2
[Internet Connection dome el ;
'— LectureAtMonash-Customised 3
[v] Ringer MonashUniversity.Level 4
[] Mideo [Camera Seminar AtMonash-Level 3
il . ShowerAtHome-Level 3
i dREtcH SleepingAtHome-Level 4
Select | oK Back | | Option | OK | Back

Figure 4.7 The result of device interaction in this scenario.

Exposed functionalities

| 7
iCurrent Exposed Level: Customised 3 ‘J

wetionality information has heen sent.

fspace Sending new information as Follow:
ipace Info Type: mode

Space fs Mode to he set as follow:

[Functionality : Ringer
ode :

[Functionality : Uibration
ode : off

| l/:unctionalities that need to be set

Figure 4.8 Scenario 1 debug messages from the space’s perspective.

As shown in Figure 4.8, there are two required functionalities
Jor the current space policy. The figure also shows that there are
two matched functionalities. The space then sends the message
asking the phone to set the ringer volume to level O and vibration
to the off mode. Referring to Figure 4.9, we could see the message
from the space asking the device to set the functionalities to
certain modes.

Context-Aware Artifacts ® 95

Required functionalities

The match functionalities:

‘T‘J} inger
ibration

ending the message to the phone asking the functionality to be set as follow:

: Ringer

: Uibration
= off

Matched functionalities

Figure 4.9 Scenario 1 debug messages from the device’s perspective.

Scenario 2: User in the Emergency Room of the Hospital

User accompanies a relative to an operation room of the hospital.

Space Policy

The hospital strictly requires all mobile phones to be switched
off in the emergency and operation rooms to avoid interference
caused by mobile phone signals with medical equipment.

User Preference

The user prefers to give full authority to the hospital Space-
Manager over the user’s phone. This is expressed as exposing
functionality Level 1 to the hospital SpaceManager. Based on
user preferences defining Level-1 exposure, all functionalities
are exposed to be controllable by the space. As the space has
received full control over the phone, it is authorized to ask the
phone to turn its power off.

Scenario 3: User Sleeping at Home

On Saturday afternoon, the user is taking a nap at home.

96 m Context-Aware Pervasive Systems

Space Policy

Home SpaceManager would like the phone to be in the silent
mode and vibration to be off so that the incoming call will not
disturb the user.

User Preference

The user would like the phone to expose functionality level 7,
which means that the vibration functionality is exposed. The
reason for this is that the user would like the phone ringer
volume to stay on the current setting as, while he is sleeping,
he is expecting an important call from a partner. There are two
functionalities that are required from the device based on the
current space policy. However, only one functionality is
exposed, the vibration settings; i.e., in this case, the user’s
preferences are respected. Although the space wants to control
the ringer volume as well, the phone only allows the vibration
setting to be controlled by the space. Therefore, the space can
only ask the phone to set the vibration mode off.

Scenario 4: User Driving, in the Car

User is driving to office in a car.

Space Policy

For road safety purposes, all drivers are strictly banned from
using cell phones in cars. Therefore, the car space policy
requires the cell phone to be in the silent mode and the
vibration mode to be off. Based on this policy, the SpaceMan-
ager of the car requires control of the ringer and vibration
functionalities from the device.

User Preference

The user has made a customized level of exposed functionality
for the driving context that only allows the ringer volume to
be controlled by the car’s SpaceManager. There are two required
functionalities for the current space policy. However, only the
vibration functionality is exposed.

Context-Aware Artifacts ® 97

Scenario 5: User Watching a Movie in a Cinema

The user is watching a movie in a cinema.

Space Policy

The cinema urges customers to put their phones to silent mode
during the movie, so that the phone will not distract other
customers.

User Preference

The user enables the phone to be exposed to the cinema’s
SpaceManager, but, based on the user’s preference for this
particular situation, the phone exposes only the SMS function-
ality. As the current space policy requires the phone to expose
two functionalities, the ringer and the vibration, there is no
matching functionality because of the user’s preference. But the
SpaceManager could send an SMS message to the phone asking
the user to set the functionalities based on the space policy.

Scenario 6: User on Board an Airplane

User is on the plane.

Space Policy

Mobile phone is strictly required to be switched off during the
flight to avoid interference with airplane equipment.

User Preference

The user enables Level-2 exposure to the plane’s SpaceManager,
which includes all the device’s functionalities, except power.
Because of the space policy requiring the mobile phone to be
switched off and the current user’s preference not enabling this
phone functionality to be exposed, the SpaceManager cannot
turn the phone off automatically.

We have seen that in some scenarios, there might be a case in
which the space policy requires functionalities not fully match-

98 m Context-Aware Pervasive Systems

ing the device’s exposed functionalities as shown in scenarios 3
and 4, in which the space required two functionalities whereas
only one functionality is exposed. In addition, there are
instances in which no functionality from the device matches the
space policy requirement, as shown in scenarios 5 and 6.

Space control over device functionality can be viewed from two
different perspectives. The first is the space control of device func-
tionality for compliance reasons; this means that the device bas
an obligation to follow the space’s policy. Scenarios 2, 4, and 6
illustrate the compliance view, where the SpaceManager has strict
requirements about the functionalities it needs to control and,
therefore, about the functionalities the phone should expose.

In Scenario 2, the SpaceManager that belongs to the hospital
strictly requires all mobile phones to be switched off when the
user is in the emergency or operation room to avoid the inter-
ference of mobile phone signals with medical equipment. A
similar case for the car SpaceManager is Scenario 4, in which
the user (or device) has to comply with the road safety rule that
requires all drivers not to use their mobile phones while driving.
In addition, Scenario 6 illustrates the airplane SpaceManager
strictly requiring all electronic equipment, including mobile
phones, to be turned off during flight to avoid interference with
airplane equipment.

There are a number of ways to enforce compliance by the user’s
device, such as asking the user to sign an agreement before
utilizing services or coming into particular spaces. For compli-
ance, there has to be a mechanism to ensure that the device
obeys the space requirements. The implementation bas tried to
addlress this issue by baving a default exposure level that has a
predetermined set of functionalities exposed, and such exposure
levels can be associated with particular situation types as a
default setting on the device. However, in the current prototype
implementation, there is no mechanism to enforce this — the
user might associate a level of exposure to a situation type,
different from the default level and, thus, not comply with the
space policy.

The second perspective is the space control of device functionality
Jfor the convenience of the user; i.e., the space automatically sets
the phone to particular modes to avoid the users having to do

Context-Aware Artifacts ® 99

this manually. This perspective is illustrated in scenarios 1, 3,
and 5.

One can think of many situations in which the phone can find
itself, such as in a restaurant, in a bus, or in a meeting, where
appropriate context-aware actions can be taken, whether for
compliance or convenience reasons. Such context-aware bebau-
ior of the phone might also be employed beyond compliance and
user convenience reasons, but for specific applications, such as
changing the phone’s wallpaper (containing some suitable adver-
tisements) when passing through different spaces (say, along a
street). Automated mnegotiation between the space and device
involving software agents might be employed to determine agreed
levels of control, but, where compliance is involved, enforcing a
policy, whether utilizing an incentive or penalty mechanism,
would involve issues beyond a mere technical solution.

4.4 SUMMARY

We have reviewed context-aware artifacts, and we imagine that new
artifacts are being developed and will emerge in the coming years.
Developing such artifacts involves a combination of engineering and
computing expertise, including hardware and software. We have presented
the work in the two categories of self-supported and infrastructure-sup-
ported context-awareness, following Loke (2006). In addition, different
ways in which sensing, acting, and reasoning can be distributed for
developing context-aware artifacts — that is, the possible architectures —
have been examined, leading to interesting design possibilities. Our exam-
ple of the CAMP-UP system is detailed and illustrates an implementation
of a context-aware mobile phone using the space and artifact model.
Stepping back from mobile phones, the interaction between the space
and an artifact can be further explored for different kinds of artifacts and
different spaces; e.g., when the artifact moves into different spaces, it
might be endowed with different possible sensory information and be
capable of new actions, using sensors and effectors at the infrastructure
or space end. For example, robots in households need not only work
with the sensors on them but also utilize the sensors on the infrastructure
(e.g., a positioning infrastructure) in the home.

100 m Context-Aware Pervasive Systems

REFERENCES

Agarawala, A., Greenberg, S., and Ho, G., The Context-Aware Pill Bottle and Medication
Monitor, Technical Report 2004-752-17, Department of Computer Science,
University of Calgary, Calgary, Alberta Canada.

Anastasopoulos, M., Bartelt, C., Koch, J., Niebuhr, D., and Rausch, A., Towards a
reference middleware architecture for ambient intelligence systems, Proceedings
of the Workshop on Building Software for Pervasive Computing at OOPSLA, 2005,
available at http://www.ics.uci.edu/~lopes/bspc05/papers/anastopoulos.pdf.

Beigl, M., Gellersen, H-W., and Schmidt, A., MediaCups: experience with design and
use of computer-augmented everyday objects, Computer Networks, special issue
on Pervasive Computing, Elsevier, 2001.

Biegel, G. and Cahill, V., A framework for developing mobile, context-aware applica-
tions, Proceedings of the 2nd IEEE Conference on Pervasive Computing and
Communmnications, Percom 2004, Orlando, FL, March 14-17, to appear, available
at Department of Computer Science, Trinity College Dublin, Technical Report
TCD-CS-2004-04, available at http://www.cs.tcd.ie/publications/tech-
reports/reports.04/TCD-CS-2004-04.pdf.

Bonanni, L., Arroyo, E., Lee, C.-H., and Selker, T., Smart sinks: real-world opportunities
for context-aware interaction, Proceedings of the CHI 2005, Portland, OR, April
2005, ACM Press, 1232-1235, available at http://web.media.mit.edu/~amerigo/
p1232-bonanni.pdf.

Brooks, R.A., A Robust Layered Control System for a Mobile Robot. A.I. Memo 864,
MIT, U.S.A., September 1985.

Chang, K.-H., Liu, S.-Y., Chu, H.-H., Hsu, J., Chen, C., Lin, T.-Y., Chen, C.-Y., and
Huang, P., Dietary-aware dining table — observing dietary behaviors over
tabletop surface, Proceedings of the 4th International Conference on Pervasive
Computing (Pervasive 2006), Dublin, Ireland, May 20006, available at
http://mll.csie.ntu.edu.tw/papers/diettable_pervasive2006.pdf.

Chen, H., Finin, T., and Joshi, A., A context broker for building smart meeting rooms,
Proceedings of the Knowledge Representation and Ontology for Autonomous
Systems Symposium, C. Schlenoff and M. Uschold, Eds., 2004 AAAI Spring
Symposium, Stanford, CA, 2004, AAAI Press, pp. 53-00.

Christensen, H.L., Intelligent home appliances, in Robotics Research, Jarvis, R.A., and
Zelinsky, A., Eds., No. 6 in Springer Tracts in Advanced Robotics (STAR),
Springer-Verlag, 2003, pp. 319-330.

Connelly, K. and Khalil, A., On negotiating automatic device configuration in smart
environments, Proceedings of PerWare 04 Workshop, 2nd IEEE International
Conference on Pervasive Computing and Communications, Orlando, FL, March
14-17, 2004.

Dey, AK., Salber, D., and Abowd, G.D., A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications, in special issue
on context-aware computing in the Human-Computer Interaction (HCI) Jour-
nal, 16(2—4), 97-166, 2001.

Dubendorfer, T., An Extensible Infrastructure and a Representation Scheme for Dis-
tributed Smart Proxies of Real World Objects, Master’s thesis, Swiss Federal
Institute of Technology, Zurich, April 2001, available at http://www.vs.inf.
ethz.ch/publ/papers/TR_359.pdf.

Context-Aware Artifacts ® 101

Fujinami, K., Kawsar, F., and Nakajima, T., Aware mirror: a personalized display using
a mirror, Proceedings of the International Conference on Pervasive Computing
(Pervasive 2005), Munchen, Deutschland, May 2005.

Gatenby, D.A.G., Galatea: Personalized Interaction with Augmented Objects, Master
of Science thesis, MIT, September 2005, available at http://web.media.mit.edu/
~dagg/thesis/ThesisFinal.pdf.

Gellersen, H.W., Schmidt, A., and Beigl, M., Multi-sensor context-awareness in mobile
devices and smart artifacts, Mobile Networks and Applications (MONET), Octo-
ber 2002, available at http://www.comp.lancs.ac.uk/~hwg/publ/monet.pdf.

Gershenfeld, N., When Things Start to Think, Henry Holt and Company, U.S.A., 1999.

Hakansson, M., Ljungblad, S., and Holmquist, L.E., Capturing the invisible: designing
context aware photography, Proceedings of DUX 2003, Designing for User
Experience, ACM Press, available at http://www.viktoria.se/fal/projects/photo/
DUX_hakansson.pdf.

Headon, R., Movement awareness for a sentient environment, Proceedings of the 1st
Conference on Pervasive Computing and Communications (PerCom 2003),
March 2003, IEEE Computer Society Press.

Henricksen, K. and Indulska, J., A software engineering framework for context-aware
pervasive computing, Proceedings of the 2nd Conference on Pervasive Com-
puting and Communications (PerCom 2004), 2004, pp. 77-86.

Himber, J., Tikanmiki, J., Toivonen, H.T.T., Korpiaho, K., and Mannila, H., Time series
segmentation for context recognition in mobile devices, Proceedings of the
2001 IEEE International Conference on Data Mining (ICDM’01), San Jose, CA,
IEEE Computer Society Press, 2001, pp. 203-210, available at http://www.
nokia.com/downloads/aboutnokia/research/library/software_computing/
SWC5.pdf.

Hong, J.I. and Landay, J.A., An infrastructure approach to context-aware computing,
Human-Computer Interaction (HCD Journal 16(2-3), 2001.

Ito, M., Iwaya, A., Saito, M., Nakanishi, K., Matsumiya, K., Nakazawa, J., Nishio, N,
Takashio, K., and Tokuda, H., Smart furniture: improvising ubiquitous hot-spot
environment, Proceedings of the 3rd International Workshop on Smart Appli-
ances and Wearable Computing at ICDCS, Providence, RI, 2003, IEEE Computer
Society, pp. 248-253.

Kameas, A., Bellis, S., Mavrommati, I., Delaney, K., Colley, M., and Pounds-Cornish,
A., An architecture that treats everyday objects as communicating tangible
components, Proceedings of the 1st IEEE International Conference on Pervasive
Computing and Communications (PerCom’03), available at http://cswww.
essex.ac.uk/Research/iieg/papers/egadgets-percom03.pdf.

Knight, J.F., Schwirtz, A., Psomadelis, F., Baber, C., Bristow, H.-W., and Arvanitis, T.N.,
The design of the SensVest, Personal and Ubiquitous Computing 9, 619, 2005,
Springer.

Kumar, R., Poladian, V., Greenberg, I., Messer, A., and Milojicic, D., Selecting devices
for aggregation, Proceedings of the IEEE Workshop on Mobile Computing Services
and Applications, 2003.

Langheinrich, M., Mattern, F., Romer, K., and Vogt, H., First steps towards an event-
based infrastructure for smart things, Proceedings of the Ubiquitous Computing
Workshop (PACT 2000), Philadelphia, PA, October 15-19, 2000, available at
http://www.vs.inf.ethz.ch/publ/papers/firststeps.pdf.

102 m Context-Aware Pervasive Systems

Loke, S.W., Context-aware artifacts: two development approaches, IEEE Pervasive 5(2),
48-53, 2000.

Loke, S.W., Syukur, E., and Stanski, P., Adding Context-Aware Behaviour to Almost
Anything: the Case of Context-Aware Device Ecologies, accepted for the
MobiSys 2004 workshop on context-awareness, available at http://www.
sigmobile.org/mobisys/2004/context_awareness/papers/mobisys-ca.pdf.

Matthews, T., Gellersen, H-W., Van Laerhoven, K., and Dey, A K., Augmenting collec-
tions of everyday objects: a case study of clothes hangers as an information
display, Proceedings of Pervasive’04, 2004, pp. 340-344.

Metzger, C., Indirect object-sensing technology to prevent out-of-stocks at retail-level,
Proceedings of the Workshop on Smart Objects at the International Conference
on Ubiquitous Computing (UbiComp05), Tokyo, Japan, 2005, available at
http://ubicomp.lancs.ac.uk/workshops/sobs05/papers/Metzger,%20Christian.
pdf.

Mihailidis, A., Tse, L., and Rawicz, A., A context-aware medication reminding system:
preliminary design and development, Proceedings of the Rebhabilitation Engi-
neering and Assistive Technology Society of North America, Atlanta, GA, June
2003.

Nakajima, T., Fujinami, K., and Tokunaga, E., Building intelligent environments using
smart daily objects and personal devices. Proceedings of the Workshop on
Context Awareness for Proactive Systems (CAPS2005), Helsinki, Finland, June
2005, available at http://www.dcl.info.waseda.ac.jp/publications/pdf/ic2005-
building_intelligent.pdf.

Patten, J., Ishii, H., Hines, J., and Pangaro, G., Sensetable: a wireless object tracking
platform for tangible user interfaces, Proceedings of the Conference on CHI,
2001, ACM Press, pp. 253-260.

Picard, R'W. and Klein, J., Computers that recognise and respond to user emotion:
theoretical and practical implications, Interacting with Computers 14(2),
141-169, 2002.

Prante, T., Stenzel, R., Rocker, C., Streitz, N., and Magerkurth, C., Ambient agoras:
InfoRiver, SIAM, Hello.Wall, Proceedings of the Conference on Human Factors
in Computing Systems (CHI'04), Vienna, Austria, 2004, ACM Press, pp. 763-764.

Raento, M., Oulasvirta, A., Petit, R., and Tolvonen, H., Contextphone: a prototyping
platform for context-aware mobile applications, IEEE Pervasive Computing 4(2),
51-59, 2005.

Salvador, Z., Bonail, B., Lafuente, A., Larrea, M., Abascal, J., and Gardeazabal, L.,
AmIChair: ambient intelligence and intelligent wheelchairs, Proceedings of the
Home Oriented Informatics and Telematics Conference, Vol. 11, HOIT 2005,
York, UK., 2005, pp. 31-36.

Schilit, B.N., Adams, N., and Want, R., Context-aware computing application, Proceed-
ings of the Workshop on Mobile Computing Systems and Applications, Santa
Cruz, CA, 1994, IEEE Computer Society, pp. 85-90.

Selker, T., Arroyo, E., and Burleson, W., Chameleon tables: using context information
in everyday objects, Proceedings of the Conference on Human Factors in
Computing Systems, CHI'02 extended abstracts on human factors in computing
systems, Minneapolis, MN, 2002, pp. 580-581.

Siegemund, F., Cooperating Smart Everyday Objects — Exploiting Heterogeneity and
Pervasiveness in Smart Environments, Doctor of Technical Sciences Disserta-
tion, Swiss Federal Institute of Technology (ETH Zurich), 2004.

Context-Aware Artifacts ® 103

Siewiorek, D., Smailagic, A., Furukawa, J., Krause, A., Moraveji, N., Reiger, K., Shaffer,
J., and Wong, F.L., SenSay: a context-aware mobile phone, Proceedings of the
Seventh IEEE International Symposium on Wearable Computers (ISWC'03),
available at http://csdl.computer.org/comp/proceedings/iswc/2003/2034/00/
20340248 pdf.

Skramstad, H., Augmented Objects — Blending Bits and Atoms, 2002, available at
http://www.ivt.ntnu.no/ipd/fag/PD9/2002/Artikler/Skramstad%201.pdf.

Steurer, P. and Srivastava, M.B., System design of smart table, Proceedings of the IEEE
International Conference on Pervasive Computing and Communications, Dal-
las-Fort Worth, TX, 2003, pp. 473-480.

Tuulari, E., Context-Aware Hand-Held Devices, Technical Report of the Technical
Research Centre of Finland, VIT publications 412, 2000, available at
http://www.inf.vtt.fi/pdf/publications/2000/P412.pdf.

Vidales, P. and Stajano, F., The sentient car: context-aware automotive telematic, poster
in Proceedings of Ubicomp 2002, Goteborg, Sweden, available at http://
www-lce.eng.cam.ac.uk/~pav25/publications/Ubicomp2002(poster).pdf.

Vildjiounaite, E., Malm, E.-J., Kaartinen, J., and Alahuhta, P., Context awareness of
everyday objects in a household, Proceedings of Ambient Intelligence, I1st
European Symposium, EUSAI 2003, Aarts, E.H.L., Collier, R., van Loenen, E.,
and de Ruyter, B.E.R., Eds., Veldhoven, The Netherlands, 2003, Lecture Notes
in Computer Science 2875, pp. 177-191.

Wang, X., Zhang, D., Dong, J.S., Chin, C., and Hettiarachchi, S.R., Semantic space: a
semantic web infrastructure for smart spaces, IEEE Pervasive Computing 3(3),
32-39, 2004.

Wooldridge, M. and Jennings, N.R., Intelligent agents: theory and practice, 7he Knowl-
edge Engineering Review 10(2), 115-152, 1995.

Yamabe, T., Fujinami, K., and Nakajima, T., Experiences with building sentient materials
using various sensors, Proceedings of the 24th International Conference on
Distributed Computing Systems Workshop (ICDSCW 2004), IEEE Computer
Society Press.

Yonezawa, T., Clarkson, B., Yasumura, M., and Mase, K., Context-aware sensor-doll
as a music expression device, Proceedings of Conference on Computer-Human
Interface, 2001, available at http://www.mic.atr.co.jp/~yone/chi2001/.

5

CONTEXT-AWARE MOBILE
SOFTWARE AGENTS FOR
INTERACTION WITH WEB
SERVICES IN MOBILE
ENVIRONMENTS

In this chapter, we discuss intelligent software agents running on mobile
agents that are context aware for interacting with Web services. This
framework is called Context-Aware Lightweight Mobile BDI Agents (or
CALMA, for short). We also present the implementation and evaluation of
the CALMA framework. This chapter differs from Chapter 3 on context-
aware mobile services in that we attempt a deeper exploration here of
the notion of the agents to encapsulate and embody functionality and
intelligent behavior; we think of the agents, and not the services, as being
context aware. Rather than considering the context of users of mobile
devices, or the context surrounding an artifact, we consider the context
in which software agents find themselves.

5.1 AGENTS: MOBILE AND INTELLIGENT

Mobile agents have been explored as a technology to support mobile and
ubiquitous computing because of their host-to-host migratory attribute
(Kotz and Gray, 1999). The ability for computations to move from host
to host on a network in an autonomous fashion becomes particularly
suitable in environments that are characterized by limited and dynamically

105

106 m Context-Aware Pervasive Systems

changing availability of computational resources and levels of connectivity.
In this context, several mobile agent toolkits have been developed that
provide runtime support for mobile agents in resource-constrained envi-
ronments such as the Mobile Agent Environment (MAE) (Mihailescu and
Kendall, 2002) for the Palm OS™ and Grasshopper (http://www.grasshop-
per.de) for WinCE™. However, the focus of mobile agent toolkits for
resource-constrained mobile devices has been on the provision of support
for migration. The issue of context awareness is typically delegated to the
agent application. Context awareness is a key attribute for the successful
deployment of mobile agents in ubiquitous environments and in fact forms
part of the rationale for their usage. It is this attribute that enables an
agent to perform tasks such as migrate when resources are running low,
migrate when a connection is available, and avoid embarking on a task
that requires continuous connectivity when the device is experiencing
frequent disconnections. However, the incorporation of context awareness
into mobile agents operating in resource-constrained environments brings
with it a computational overhead that needs to be taken into consideration.

5.2 SCENARIOS

Web browsers mediate between users and the underlying machinery of
the Web, providing a layer of abstraction and handling errors as pleasantly
as possible. Web services provide a programmatic view of the Web, so
that applications can harness the Web’s advantages of accessibility and
standardized protocols. Web services are invoked from within the context
of an application, which is some program that contains Web service calls.
For example, we might have an application that obtains details about
user’s preferences about movies and invoke appropriate Web services (or
a composition of services) to book tickets for the user at specific times
and cinemas. The application has to handle failures in the invocation of
the services and processes the results accordingly, which can happen in
the fixed network but becomes more apparent in wireless mobile com-
puting environments. If the application is running on a mobile device, it
will face the often-cited challenges with mobile computing, including
disconnection handling, varying bandwidth, limited device resources (such
as memory and battery power), variations in the server side (e.g., the
servers of Web services are down), and changes due to mobility of the
user (and device) that affect the relevance of services invoked and permit
opportunistic interactions — for example, the user happens to walk near
a movie theater with a direct short-range wireless connection to its system,
and cost of wireless Internet connections can therefore be avoided if the
short-range connection is used. In summary, it would be beneficial if that
application was context aware, proactive, autonomous and mobile in its

Context-Aware Mobile Software Agents ® 107

Ping failed

Web Service

D_ Context

oI - 192.168.0.1
==k Switching Applicable
o Management BDI plans: 283.
len WS Agent execute plan 2
Plan 1: Plan 2: Plan 3: Web Service 2
execute execute execute
WSH WS2 WS3 192.168.0.2

Web Service 3
192.168.0.3

Figure 5.1 Context Switching Management Agent.

behavior, and adaptive to its environment, i.e., to both the device and
the physical environment of the user. Such software properties have been
discoursed in the area of intelligent software agents.

There are several scenarios that motivate the usefulness of the Context-
Aware Web Services Agents that can operate from mobile devices. Con-
sider an agent running on a machine connected to a Web farm, as shown
in Figure 5.1. The Web farm consists of two servers that host the same
Web services. The agent acts as a Context Switching Manager that filters
the request from the client application and redirects the call to whichever
server is available at that particular moment. To perform this task, the
agent is fed with two different plans. Each plan redirects the Web service
call by repackaging the SOAP call to a particular server. In each of the
plans, a context condition that represents the availability of servers is
identified by their IP addresses. The context condition in the plan will
be checked before and during the execution of the plan. When a client
application invokes a Web service, the agent executes its Beliefs-Desires-
Intentions (BDD) logic by finding the appropriate plan from its plan library.
The agent’s BDI interpreter checks the context condition by sending a
“ping” packet to each server. If the server responds, the plan is considered
to be a valid plan and will be executed by the agent. A plan might have
a series of Web service calls and act as a Web service workflow. During
the execution of the Web services, the agent can detect the availability
of the server on each Web service call in the plan. If one of the servers

108 m Context-Aware Pervasive Systems

Battery Low
Plan Failed
Execute Context Failure
section Agent move to nearest

Execute web service
from desktop machine

|i desktop g
ooooc

PDA WorKstation

Web Service Server

Figure 5.2 Context-Aware Web Services Mobile Agent.

is unavailable during plan execution, the agent can still complete the
plan by automatically replanning itself and switching the execution to
other servers.

Consider another scenario where an agent executing on a small hand-
held device uses Web services as shown in Figure 5.2. Before calling Web
services, the handheld device must be able to detect the availability of
the connection between the handheld itself and the server. The agent’s
plan can be programmed to allow Web service calls only when the battery
power and memory resource are adequate for calling the service. More-
over, the agent can be planned to move to another machine when the
battery power is low during plan execution.

5.3 A BRIEF REVIEW OF AGENT PLATFORMS FOR
UBIQUITOUS COMPUTING

Before proceeding to describe CALMA in detail, in this section, we consider
the following agent systems based on the review presented by Sumartono
et al. (2004). AbiMA (Rahwan et al., 2003), MyCampus (Sadeh et al., 2002),
Agent Factory (Collier and O’Hare, 1999), and WAY (Lowen et al., 2002)
provide a mobile device execution environment for their agents. AbiMA
and Agent Factory agents are not integrated with Web services, and the
agents do not possess the attribute of mobility. Although MyCampus agents
use Web services to access contextual data and user profiles, the agents

Context-Aware Mobile Software Agents ® 109

are stationary at the server side. The integration of software agents with
Web services allows them to deliver complex services to mobile users.
The system shown in Table 5.1 indicates a trend toward combining
the features of reasoning, mobility, context awareness, Web service access,
and support for mobile devices. Such features tend to complement each
other and enable software applications with robust adaptive behavior.

5.4 CALMA ARCHITECTURE

CALMA uses the BDI agent model to build context awareness into mobile
agents operating in ubiquitous environments. The BDI agent model has
been used in complex multiagent systems and draws inspiration from the
philosophy of human mentalistic concepts of beliefs, desires, and inten-
tions (Wooldridge, 2002). From the programming perspective, two key
concepts in the BDI model are goals and plans, the procedure for
accomplishing goals. CALMA includes a plan language that is implemented
in XML, which facilitates the specification of plans for mobile agents based
on contextual conditions. The CALMA framework enables agents to be
lightweight by using two strategies:

1. A support infrastructure that facilitates plans to be obtained “on
demand” based on changing contextual conditions

2. Using the Web services paradigm to off-load computations to
external servers

A unique feature of CALMA is that it is implemented as an add-on to
an existing mobile agent toolkit, thereby enabling the framework to be
built on existing technologies rather than redeveloping the required mobil-
ity infrastructure. Thus, CALMA functionality can be integrated with exist-
ing agent toolkits.

As shown in Figure 5.3, the infrastructure contains three components:
CALMA task agent component, mobile device component, and server
component. The CALMA task agent component implements the BDI agent
model to provide the necessary functionality for task-specific agent imple-
mentation. The server component provides services such as matchmaking
service, plan request service, and service request handling to support the
mobile device component. The CALMA task agent component is repre-
sentative — there can be more than one such task agent. The mobile
device component contains the user interaction module to support the
mobile user in requesting services and to allow the user to manage the
task agents running on the device.

110 m Context-Aware Pervasive Systems

‘uorssiwad YUAA +E€8-/78 "dd ‘€007 ‘swaisAs juaSeniny pue sjuady snowouoiny UO 9dUdIdJU0)) JUIOf [euOIBU
-19)u] puz 3y} Jo s8uIpaad0id ‘oA diuews Yy Joy syuade Suiuoseal [ednjoeld spiemo] ‘I ‘8PILIPIOOAA PUB | ‘UOSUDI(] WO .

X X X Id9 AVM pue Alo)oed jusdy

X X X s ey sndwedAwy
wJoyed juage
SuiAjdopun pay9|os
3y} UO 3|qe|reAe

X $24N3}e3) UO SIOY 1ag LUINN

X X 1ad VNIQVY

X X 1ad WvI

S9DINS(T [[eWS pue SIDINIDS GIM ssaualeMy/ Ayijiqow ioineyag waysAs
ajiqow uo suonedyddy 10 Gap dnuUBWIS IX9IU0D) wasdypul/1qg
a8y 1oddng Joy Joddng

swid)sAg Juady paje|ay jo uostredwo) 'S dqel

Context-Aware Mobile Software Agents ® 111

Mobile Device Component

MDAgent CALMA
Manager Agent

finq'IService(service)
! Server Components
1

Manager
WS

get plan

Figure 5.3 Overview of CALMA infrastructure.

5.4.1

CALMA Agent Model

The CALMA BDI framework has the following properties:

Rationality: Represented by reasoning, based on the notion of BDI

agent mental states (Beliefs, Desires, Intentions, and Plan Library).

Mobility: The agent needs to move from server component to

mobile device component, mobile device to other hosts, or vice

versa. The agent performs its mobility for the following reasons:

B Efficient localized communication with other agents that reside
in different contexts.

B The current machine context may not have enough resources to
execute actions in the plan. This requires the agent to move to
another machine that has more resources. For instance, the agent
might prefer to perform computation on the desktop machine
rather than on small devices that have fewer resources.

112 m Context-Aware Pervasive Systems

B The move is for an application-specific reason. This is imple-
mented by declaring the move command as one of the actions
in the agent’s plan.

Context awareness: During deliberation time, the agent needs to

run on the mobile device that has limited resources. Because the

resources are limited, running agents in the mobile device might
experience resource problems such as low battery power or insuf-
ficient memory.

Social behavior: The agent needs to communicate with another

agent or service when performing its tasks.

Explicit Web service interactions: This enables management of Web

service interactions and invocations by the agent.

Figure 5.4 shows the CALMA BDI agent architecture. The BDI agent
architecture is divided into three main parts: the BDI Class, the Mobile
Agent, and External parts. The components that reside inside the BDI
Class are the core components of the CALMA BDI agents. The Mobile
Agent comes with a Mobile Agent toolkit. When the CALMA BDI agents
migrate, the BDI agents carry components in both BDI Class and Mobile
Agent. External components are those that reside in the mobile device,
and will not be carried by the BDI agents during migration.

The CALMA BDI agent architecture consists of the following components:

Resource Monitor: The Resource Monitor component is responsible
for monitoring the environment conditions during the deliberation
process. This component is the implementation of context aware-
ness for the CALMA BDI agent. Other context information can be
included, but the prototype focuses on resources. A Resource
Monitor DLL component is a collection of Win32 dynamic link
libraries for resource monitoring purposes. This component will
be called by the Resource Monitor component. Because the
Resource Monitor component is built using Java, the Resource
Monitor interfaces with the Resource Monitor DLL via Java Native
Interface (JND.

Beliefs: The Beliefs component handles the agent’s belief storage.
The agent’s Beliefs can be obtained from two different sources:
the Interpreter (e.g., Web services response, agent communication
response) and the Resource Monitor component (e.g., free memory,
battery power).

Goals: The Goals component keeps the set of goals. A goal is the
trigger for the agent’s deliberation process. The goal could repre-
sent a task submitted by users. Presently, the CALMA agent goal
is top level only. In the future, a goal can consist of top-level goals

m 113

Context-Aware Mobile Software Agents

"2IndpydIe Juade |ad VWIVD +°S 3andly

Web Services

1

sabenbue ue|d TNX [y

—

Web Services Library

[eusolxg

Sse|Q 1ad

Jaddeipy ueld TNX

Kresqr
ueld wbremybiy

J9101d1dyu)

EA,\H[

10)IUO|A| 821n0SaY

7@ J0NUO 82in0say
118100

(30 uIm J04) IdV ZEUM

Areign Areign
Y\ uonesIunNwwoy juaby Areiqr uonesbiy
eby sjiqop

114 m Context-Aware Pervasive Systems

and subgoals. The agent might distribute the subgoals to other
CALMA agents.

Intention: Intention is basically a plan that is ready to be executed.
The intention consists of actions that will be sequentially executed
by the Interpreter.

Interpreter: The Interpreter component is responsible for finding
an intention and executing the intention. During the process of
executing actions in the plan, the Interpreter manages communi-
cating with other agents, migrating the agent to another place,
displaying a graphical interface, or invoking Web services.
Lightweight plan library: A CALMA agent carries only plans related
to the task that is currently processed. The agents with lightweight
plans are formed by the server components. Plans can be obtained
from the PlanManager when required.

XML plan language wrapper: 1t is responsible for wrapping XML
data structure to yield an object-oriented data structure.

Web services library: This library handles Web service calls. The
results from this component will be passed on to the Interpreter
component.

Migration library, agent commumnication libvary, AWT (GUD) library:
These libraries are the default mobile agent toolkit’s libraries.

BDI agents can be programmed using plan scripts. A definition of the
simple plan script programming language using EBNF is given in Figure
5.5. In the plan language, each line of statement is represented by an
action component. An action component could be any of the following:

1.
2.
3.

A condition statement (IF-THEN)
A loop statement (WHILE)
A function statement (FUNCTION)

The function statement can be any of the following:

1.

An agent function. This represents the agent’s built-in functions;
for example: move, askagentbelief, and so on.

A Web service function. A function to invoke a Web service.

A user-defined function. A function that represents a call to pre-
compiled Java code. This function is useful for the agent program-
mer who wants to extend the CALMA agent’s built-in functions.

The plan is defined in the <plan></plan> element. An agent designer
can define context conditions where the plan is valid for execution. The
context conditions are given within a <context-condition></context-con-

Context-Aware Mobile Software Agents ® 115

Plan

Goal

Name
Description
Action

Function

Agent_Function
Web_Service_Function

Class_name
Method_name
Method_parameters
ContextCondition

env
ContextFailure

url

method_name
method_parameters
belief_fact
expression

value
variable_array
variable

Subgoal _name
Operator

User_Defined_Function

= expression*

Goal Name Description

ContextCondition+
ContextFailure+
Action+
STRING
STRING
STRING
Function
| “WHILE” expression “D0O” Action+
“ENDWHILE”
| “IF” expression THEN Action+
“ENDIF”

<INVOKE> Agent_Function

] <INVOKE> Web_Service_Function
| <INVOKE> User_Defined Function

Method_name Method_parameters

url Method_name
method_parameters

Class_name Method_name
Method_parameters

STRING

STRING

variable*

“CONTEXT” belief_fact
“ENVIRONMENT” env

(“FAILUREID” “=" failid)*

“arm” | “x86”

“CONTEXTFAILURE” “NAME” = failid
Action+

“HTTP:" STRING

STRING

variable operator <value>

value | variable

STRING | INTEGER

variable+

VARIABLE

STRING

“17 | “eq” | “ogt” | “le” | “ge”

Figure 5.5 Plan language for Web service calls.

dition> section. In the case of failures happening within the particular
context, the agent designer can define a set of actions in the <context-
failure></context-failure> section. The <action></action> section in a plan

specifies the agent’s actions.

5.4.2 Server Component

The server component includes CalmaAgentManager, MatchMakerAgent,
and PlanManager. To enable a task agent to request a service or a plan,

116 m Context-Aware Pervasive Systems

the MatchMakerAgent Web service and the PlanManager Web service
are provided.

The CalmaAgentManager services incoming requests from the mobile
device component. It provides the list of available services, contacts the
MatchMakerAgent to look for a task agent that can provide the requested
services, and contacts the task agent for the requested services. The
CalmaAgentManager will create and send a messenger task agent to notify
the mobile user if no suitable task agent is available in the server agency.

The MatchMakerAgent enables the task agents to advertise their
services. It maintains the list of advertised services and the associated
task agent information. Task agents may deregister their services from
the MatchMakerAgent.

Task agent plans are registered in the Plan Repository. Based on the
service name, the PlanManager retrieves the plan from its repository. New
plans can be added to the repository dynamically and the PlanManager
can feed these to respective task agents at runtime.

5.4.3 Mobile Device Component

The mobile device component contains the MDAgentManager. It provides
an interface for the user to request services and to manage task agents
on the mobile device. The user might remove the task agents currently
running on the device. Based on the task agent creation parameter, the
agent is either removed from the device or is returned to its home agency.

When the user requests a service, the mobile device component first
determines if a task agent for that request is available locally before
contacting the server component. If the task agent is not present locally,
the server component is contacted to find a match for the service as
advertised via the MatchMakerAgent. The server component then contacts
the CALMA task agent to perform the requested service. This task agent
moves to the mobile device, reads the device’s context condition, selects
a plan, and starts executing the actions defined in the selected plan.

5.5 PROTOTYPE IMPLEMENTATION AND EVALUATION

In this section, the implementation of the CALMA infrastructure is illus-
trated, using a scenario. An evaluation of the infrastructure is presented
in terms of lightweight and context-aware behavior that the implementa-
tion should support. Runtime execution performance is also discussed.
The CALMA infrastructure is implemented using the Grasshopper Agent
Platform, Apache Tomcat Web Server and Apache Axis Web Services.
The CALMA BDI Engine including the plan language and parsers have
been implemented as add-ons to the Grasshopper and Aglets Mobile Agent

Context-Aware Mobile Software Agents ® 117

Toolkits. Enabling Web services through the PDA requires a SOAP protocol
handler. The kSOAP package from Enhydra software (http://ksoap.enhy-
dra.org) is used. The kSOAP package provides an interface between J2ME
(Java 2 Micro Edition) with MIDP to access Web services that run on
HTTP. On the mobile device implementation, Java code is executed using
the Jeode Embedded Virtual Machine (EVM) which is based on Sun’s
Personal Java Specification. The agent’s access to Web services is explicitly
specified using the plan language.

5.5.1 lllustrative Scenarios
5.5.1.1 Booking Movie Tickets

Figure 5.6 presents a screenshot of the Grasshopper BDI agent that
executes a plan containing an action to call a simple Web service from
the mobile device. The Web service is hosted in the Internet Information
Server (IIS) Web server that runs the .NET framework.

A simple scenario using CALMA agents to book movie tickets is shown
in Figure 5.7. In brief, the booking-movie-ticket scenario works as follows.
A user wants to book a movie ticket from a handheld device. After
submitting a Book Movie Ticket task, a Local Agent will automatically ask
for user preferences for the movie ticket. The preferences include type
of movie, time, and location. Once the user fills in the preferences, the
Local Agent will break down its task and create new subtasks. Then, the
Local Agent will ask for agents that have the capability of pursuing those
subtasks. We also assume that for simplicity a cinema has two kinds of
servers. The first server hosts the CALMA system and the second server
hosts Web services. In the handheld device, a stationary CALMA BDI agent
is the Local Agent responsible for handling the user input. When the user
selects the Book Movie Ticket task, the CALMA Stationary Agent creates
a CALMA Mobile Agent. The CALMA Mobile Agent is given two plans.
The first plan is to move to the first server and ask the CALMA Local
Agent on the cinema server to book the ticket. The other plan is to book
a movie ticket by invoking a Web service on the second server, without
using mobile agents. The second plan can be used when the first plan
fails or if the cinema server does not support mobile agents.

5.5.1.2 Finding an IDD Calling Card

The user requests the FindIDDCallingCardAgent to find the cheapest IDD
calling card provider. The user then gets the desired phone card from
the shop without the trouble of searching the phone card list for the
cheapest provider.

118 m Context-Aware Pervasive Systems

<%@ WebService Language="C#"
Class="edu.au.monash.CALMA.HelloWorldService" %> Address !#j hittp: 192, 168.0, LDUFHEWD"N-E‘Eﬂ
using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

=

HelloWorldService

namespace edu.au.monash.CALMA

[WebService(Namespace="urn:Foo")] The following operations are supported. For a formal
public class HelloWorldService: WebService definition, please review the Service Description.

{
[WebMethod, SoapRpcMethod]

« |l 1
public string HelloWorld(string name) = HelloVorld

return "Hello World from "+name;

.NET Web Service

<?xml version="1.0"?>

<plan> EVMCorsoles % |
<name>Test web services</name> frar filesf on Belisf! the size
<eventtrigger>exechellowebservice comes 1 ™1
</eventtrigger>

Exacuting the plans...
et The first plan, plan Haue:
services

<description>Test Web Service Plan</
description>
<contextconditions envirpr\ment="arm"> PE% ST STAVLCORRERT | |
</contextconditions> —
<contextconditions environment="x86"> RPN puEa -
</contextconditions> — I"It!l.:l.ﬂl]l L
<actions> -
<function type="extern"> anash
<methodname>HelloWorld</methodname> dd HELLORIFULT = Hallo Worid o[
<url>http://192.168.0.100/HelloWorld.asmx</url> to beliel
<servicenamespace>urn:Foo</servicenamespace> dd ERVIROMNMENT = arm o balief
<param name="name" value="Monash" /> add MEHORY_TOTAL_AVAIL_PHYSICAL
<retval>$HELLORESULT</retval> 56 To belisd

</function> dd MEMORY_TOTAL_AVAIL VIRTUAL
<function type="agent"> £o balia?
‘methodnar /methodname
<param name="msg" value="$HELLORESULT" />
</function>
</actions>

</plan>

Werld &

7 o Baliar
=3 I PHTSICAL
VIBTUAL

s = L ™
- 100
et Ang ark enviTsnaent fros th
Rapping parasster © sig=Mallo W

Rrnah

ANNCUWTANG ARt TRt Lo b
=

Figure 5.6 Executing an example Web service by a CALMA BDI agent.

® 119

Context-Aware Mobile Software Agents

Juade YWTVD Supjooq daow 'S indiy

<uelds>
<suoijoe/>
<Hf>
<uojouny/>
<Bsw/>11NSIHAYYOIINOHAANIA$ Aq paiayo pieo auoyd Isadeayo ay) puly ap<Bsw>

<,Juabe,=adf) uonouny>
<uoljouny/>
<eN2Y/>1INSTHAHYOINOHJANIS$<leniel>
</, 3NYL.=oN[er Joljaqiualediiayul, =sweu wesed>
</ ,JUX pOWSP\ WX cOwap\,=aneA ,sue|d,=aleu weseds
</ ,preoauoydpuy,=anjen Jusns,=aweu weseds

<, Juabe,=adA} uonouny>
<,pIeD auoyd puld,=z/en ,b3,=do MSY1 ISOOHDS.=11eA Ji>
<»>
<uogouny/>
<Bsw/>11NSIHYININIOANISS PaX00q aney NoA<Bsw>

<,Juabe,=adf) uonouny>
<uoljouny/>
<eNj3)/>1 INSFYYININIOONIS$<leniel>
</, 3NYL.=oN[er Joljaqiualediiayul, =aweu wesed>
</ ,JWX ZOWaP\|WX' LOWaP\,=anfeA ,sue|d,=aweu wejed>
</ ,[PWaUIOPUY, =3N[EA ,JUSAS, =aWeU weled>

<, Juabe,=adA} uonouny>
<JOLL BIAON 008, =z/eA ,b3,=d0 YISV 1 ISOOHOS.=LIEA Ji>
<uonouny/>
<IBNR/>YSYL ISO0HO$<IENI>
</ [pIeD 3U0yd pul:}exol] SIAO %oog,=anjeA suondo,=aweu wesed>
</ ,$se) 3SC0Y0 35E3|d,=an[en Bsw, =aweu wesed>
<3WIBUPOY}aL/>3S00YI<UEBUPOYIW>
<,Juabe,=adA} uonouny>
<suoioe>
<SUONIPUOOIXBJU0D/>
<,98X,=)UBWUOJIAUS SUO}IPUOIIXBJU0D>
<SUOIIPUOIXBJU0D/>
<, W, Z)UBLUUOJIAUS SUO]
<uonduosap/>syse) moys |im ueld siy | <uondudseps
<JabBuyuana/>syseymoys<abbinusne>
<3IUBU/>)SE] MOYS<OWEU>
<uejd>
<40" L=UOISION [WX;>

»

| KN

oTqoumy quahy Autgnosxs

[pIB] suoyg puty ‘I=HAT]
og]=suotido @ zzgemersd Aurtdden

3
azeald=hsm : zsqemeaed Autdden
ramey ueTd ‘werd 95113 =ays 989

s--smerd eryg huronosxg
T: Samoos
SETS 814 JeFTT o soowxa zosam

T: TdY¥ ¥
meTd Jo =ET4
Br1d 70 AETS

3517 wetd {
3 8¢ = INID
T = SNIVLS

120 m Context-Aware Pervasive Systems

Along with other task agents, the FindIDDCallingCardAgent is created
via Grasshopper at the server side. The agent executes the actions in its
start-up plan that includes invoking the MatchMaker Web service to adver-
tise its service, and invoking the PlanManager Web service to load its plans.

In the FindIDDCallingCard scenario, the user selects the FindIDDCall-
ingCard service from the list of advertised services as shown in Figure
5.8(a). As the CalmaAgentManager receives the request from the MDAgent-
Manager, it informs the MatchMakerAgent to match the requested service
with a task agent. The CalmaAgentManager then informs the FindIDDCall-
ingCardAgent about the mobile user request. The FindIDDCallingCard-
Agent starts its execution by finding an applicable plan from its plan
library to achieve its new goal. It first moves to the mobile device, and
then reads and updates the device context information (updating its beliefs
in the process) before it continues further actions.

When the FindIDDCallingCardAgent’s intention is unable to continue
based on its updated beliefs, the agent executes its default plan to request
a new plan as shown in Figure 5.8(b). The default plan involves an action
to invoke the PlanManager Web service. After retrieving the applicable
plan from the PlanManager, it then starts executing the plan. In Figure
5.8(c), the mobile user submits the country name to the agent to initiate
its search for the IDD calling card provider's name and call rate. The
agent executes the actions in its plan and displays the results on the device.

5.5.2 Enabling Lightweight Behavior

As shown in Table 5.2, the size of the full BDI agent (with 10 initial plans,
different plans catering for different contingencies) is almost three times
larger than the lightweight BDI agent (with one initial plan, further plans
downloadable if and when required). In resource-constrained environ-
ments, the lightweight agent model requires less memory to run and can
perform the same tasks as the full BDI agent.

Besides the lightweight plan library, CALMA enables lightweight appli-
cations with respect to the mobile device (i.e., applications initiated on
the mobile device avoid or reduce use of mobile device resources) via
the following ways:

1. Enabling the task agent to move around in the network to perform
its tasks autonomously (off-loading computations this way)

2. Enabling task agents to use external resources via Web service
invocations

3. Reducing the size of the mobile device component by using the
Grasshopper codebase to specify the task agent class library’s
location remotely

= 121

Context-Aware Mobile Software Agents

‘oL1eudds paed uijed g ue Suipuly g¢'s 3indiy

k> - [e andur Q_

a1 i D

sanduriogaducad [poyasH]
[Ko zenog gv] Buzinosig)
A
[PREJSUTTTEIqIIPWEL “HOTIUSIMT]
[ETA =

~ZBH-L0] <--- [TYATIIY]
2397 5T URYPITIEUTTIVIQIIPVT]
wpIvSuTTTeQIIPWTS ~ sunhviso s -u
OWINPECNE PBI0AE IsDEUEe DY
PRYIuesy Sadslep Isbeueyausfyan]
zaomad [T] pune; Isfeuveiavwsdyad

EIiS 3 - [Aesuodiial| T

4] |] |

[¥

snl -

TE/SFE/0808 T 0 89T 2614/ -4
iTa
[weTgatnersg] Buranosuy
e
[ueTgazaga=h uwogauw=aul]
ax ~ueTdaTnes ap fsusTdenTe S5 1]
“0°BIT ZETS S day[wety Butproq]
WET{INANIBG [UETLENTF]
PREIOUTTTEIIAIPUTS [WET4YsnTy]
SE5TRF [SUET4I0IN0ST]
PiTdY U [pIRISUTTTRIMIIPUTA]
T
[PIE)EUTT TR0 QIIPWEL ~HoT3uR3uT]
1986 1 L5]

=ABH-L0] <——— [TYATIET]

=33 =T aushYpIRIAUTTTRIQIIRUT)

| KN

A0SUOOWAT

(@)

GO 3 o4+ - [2iunbuod hm

4] | 1] [®

omwey [T] prmoy asEevmyiasbirggy -

arse Idr i, S

+4291 49 00-5551 aghFIidan

VS A0

pUEBUIEDAIPUY
7= 158JIMBS B|QEREAD

[]
P R

vrs]| 0002 7B Z6T) ne00s

15501PPY ABAIBS

. £3adIAIIT, PLUED)

(e)

122 m Context-Aware Pervasive Systems

Table 5.2 BDI Agent (with 10 Plans) and Lightweight BDI Agent
Size Comparison

Full BDI Agent Lightweight BDI Agent

Size of agent 9050 9050
Total plan size 236560 23656
Size of BDI component 81544 81544
Total (in bytes) 327154 114250

Note: Size of plan depends on actions defined in agent’s plans.

5.5.3 Enabling Context Awareness

In terms of the context awareness of the BDI agent, we have shown
how FindIDDCallingCardAgent detects its execution context as it moves
to a resource-constrained device. The agent reacts to its context situation
and requests new plans from the server-side PlanManager. For the Find-
IDDCallingCardAgent to achieve its goals, it constantly reads and under-
stands the context information while executing its current intention. It
requests new plans from the server if its current execution is restricted
in the new context.

The FindIDDCallingCardAgent also captures its migration and Web
services invocation status. We enable the task agent to retry its migration
and Web services invocation. The number of retries is configurable, based
on the nature of the task agent. One task agent may be persistent in
returning its result to the device user, whereas the other may quit after a
number of attempts.

5.5.4 Performance Evaluation

In Figure 5.9, the performance of the lightweight FindIDDCallingCardAgent
and the full FindIDDCallingCardAgent in the CALMA infrastructure are
compared. The result is tested on the HP iPAC H4150 PDA. Figure 5.9(a)
presents the results for experiment 1 (Expl) in which the lightweight
FindIDDCallingCardAgent contains the applicable plan when it migrates
to the mobile device. Figure 5.9(b) presents the results for experiment 2
(Exp2) in which the lightweight FindIDDCallingCardAgent migrates to the
mobile device without any applicable plan. The result presented is only
indicative and would depend on the actual devices used, network band-
width, and server-side processing power.

In Expl, the lightweight FindIDDCallingCardAgent outperforms the full
FindIDDCallingCardAgent in plan searching or loading. The full FindID-
DCallingCardAgent uses a longer time to search through its plan library,

= 123

Context-Aware Mobile Software Agents

‘snsal dduewniopdd uonndaxy 6°s aundiy

[eAssjul swi}

[eALly - }senbay @
swil

BuipeoBuiyosess
ueldl

Wi UOIIBOoAU|
9oIM8S gom O

M1 Tind
0000

000°0¢
000°0%
000709
000°08

ue|d uonesiddy oN apoyy Alenegq :gdx3

[eAJdlUl BWI}
[eALlY - }senbay O

auwl|

Buipeo/buiyosess
ueldm

BWI] UOIEBOOAU|
201198 go O

(Ireo (Ireo
ISMT 1sH)T1IN4
r 0000
00001
00002
000°0¢
000°0V

uejd ajqealiddy yum apoy Asepeg :Ldx3

(@

®

124 m Context-Aware Pervasive Systems

compared to the lightweight FindIDDCallingCardAgent. On the other hand,
when the lightweight FindIDDCallingCardAgent does not have any appli-
cable plan, as shown in Exp2, it requires a longer time to retrieve plans
by invoking the plan request Web service.

Although the lightweight FindIDDCallingCardAgent requires more time
to obtain an applicable plan compared to the full FindIDDCallingCardAgent
in Exp2 (because it has to retrieve it from the server side), it is unlikely for
even the full agent’s plan library to contain plans for all possible execution
contexts in the mobile environment. It is difficult to predict and specify
plans to cater for all the possible context conditions. The (so-called) full
FindIDDCallingCardAgent can still fail when it hits any unknown contexts
and might still need to request other plans from the server side. Moreover,
in the resource-constrained environment, the FindIDDCallingCardAgent is
wasting device resources with its plan library that consists of a large number
of nonapplicable plans. On the other hand, the lightweight agent not only
is capable of performing the same task with a minimum requirement of
memory, but it also enables dynamic updates of agents’ plans. New sets of
plans can be added to the Plan Repository dynamically to support executing
task agents. In summary, whether agents travel with many or few plans,
they might still need to retrieve new plans, and it would be useful to have
an infrastructure to support such functionality.

5.6 SUMMARY

This chapter presented the CALMA framework to enable mobile agents
operating in ubiquitous environments to be aware of changing contextual
conditions and perform appropriate tasks — migratory or otherwise. The
CALMA framework limits computation overheads to facilitate operation in
resource-constrained devices by using a unique Web services model to
off-load computations and by having a support infrastructure to facilitate
obtaining plans “on demand” dynamically. Finally, the CALMA framework
can be added to existing mobile agent toolkits as demonstrated via the
prototype package implementation.

We have also seen other work on context-aware agents and Web
service integration. CALMA is illustrative but does not exhaustively capture
all possibilities with the concept of a context-aware intelligent agent. The
key components are exemplified in CALMA and each component can be
implemented using different technologies. For example, the BDI model
is used, and other models can be employed such as rule-based reasoning
or traditional Al planning, with their own merits and drawbacks. Also,
only limited context information was demonstrated with CALMA, but other
forms of context can be employed, even about the physical environment.
The agent notion embodies and encapsulates a context-aware software

Context-Aware Mobile Software Agents ® 125

entity, either incorporating the sensing, thinking, and acting subsystems,
or utilizing such subsystems external to the agent.

ACKNOWLEDGMENTS

This chapter contains portions from (1) Sumartono, A., Loke, S.W., Krish-
naswamy, S., and Chuah, S.H., Mobile BDI agent-driven interactions with
Web services, Proceedings of the International Conference on Intelligent
Agents, Web Technologies and Internet Commerce 2004 (IAWTIC’2004),
Gold Coast, Australia, 2004, © 2004 IAWTIC2004, and (2) CALMA: context-
aware lightweight mobile BDI agents for ubiquitous computing by Chuah,
S.H., Loke, S.W., Krishnaswamy, S., and Sumartono, A., which appeared
in the Proceedings of the Workshop on Agents for Ubiquitous Computing
(available online at http://www.ift.ulaval.ca/%7Emellouli/ubiagents04/
acceptedPapers/11.pdf).

REFERENCES

Collier, R.W. and O’Hare, G.M.P., Agent factory: a revised agent prototyping environ-
ment, Proceedings of the 10th Irish Conference on Artificial Intelligence and
Cognitive Science (AICS), Cork, Ireland, 1999.

Dickinson, I. and Wooldridge, M., Towards practical reasoning agents for the semantic
Web, Proceedings of the 2nd International Joint Conference on Autonomous
Agents and Multiagent Systems, 2003, pp. 827-834.

Kotz, D., and Gray, R.S., Mobile agents and the future of the Internet, Operating
Systems Review 33(3), 7-13, 1999.

Lowen, T.D., O’'Hare, G.M.P., and O’Hare, P.T., Mobile agents point the way: context
sensitive service delivery through mobile lightweight agents, Proceedings of
the 1st International Joint Conference on Autonomous Agents and Multiagent
Systems, Bologna, Italy, 2002, pp. 664-665.

Mihailescu, P. and Kendall, E.A., MAE: a mobile agent platform for building wireless
M-commerce applications, Proceedings of the 8tbh ECOOP Workshop on Mobile
Object Systems: Agent Applications and New Frontiers, Spain, June 2002.

Rahwan, T., Rahwan, I., and Ashri, R.,, Towards a mobile intelligent assistant:
AgentSpeak(L) agents on mobile devices, Proceedings of the 5th International
Bi-Conference Workshop on Agent Oriented Information Systems (AOIS), Mel-
bourne, Australia, 2003.

Sadeh, N.M., Chan, E., and Van, L, MyCampus: an agent-based environment for
context-aware mobile services, Proceedings of the Workshop on Ubiquitous
Agents on Embedded, Wearable, and Mobile Devices at the International Con-
ference on Autonomous Agents and Multiagent Systems, Bologna, Italy, 2002.

Sumartono, A., Loke, S.W., Krishnaswamy, S., and Chuah, S.H., Mobile BDI agent-
driven interactions with Web services, Proceedings of the International Con-
Jerence on Intelligent Agents, Web Technologies and Internet Commerce 2004
(IAWTIC’2004), Gold Coast, Australia, 2004.

Wooldridge, M., An Introduction to Multiagent Systems, John Wiley & Sons, New York,
2002.

6

CONTEXT-AWARE
ADDRESSING AND
COMMUNICATION FOR
PEOPLE, THINGS, AND
SOFTWARE AGENTS

In this chapter, we consider the use of context for enhancing communi-
cation among entities, including people, things, and software agents. Such
use of context is often labeled context-aware communication, an area of
practical importance. The general architecture is applicable; a subsystem
gathers context information about entities, and then such information is
used to enhance or regulate communication-related actions. As in systems
seen earlier, the sensing and thinking subsystems can be decoupled and
perhaps built separately from the subsystem that performs or supports
communicative actions. However, we will explore examples of integrated
systems in the sections that follow.

We have already seen a context-aware device for communication (i.e.,
the CAMP-UP system) and show how a device can be adapted via context
information. In the case of CAMP-UP, the device is a communication
device though the idea is applicable to other devices, including the coffee
maker. This chapter explores further the use of context for people-to-
people and people-to-object (devices, appliances, and everyday objects
with embedded computers) communication, as well as communication
between people and software agents, and communication between soft-
ware agents.

127

128 m Context-Aware Pervasive Systems

6.1 CONTEXT-AWARE COMMUNICATION FOR PEOPLE

Information about an individual’s location, activity, surrounding environ-
ment, and level of busy-ness can be used by communication technologies
to provide more intelligent and adaptive support for interactions. The
telephone with its amazing technology has helped communication since
its invention in the 1870s, but it could ring at most inappropriate and
inconvenient times and be a source of annoyance. Often, the callee does
not have a choice and is forced to hear the ringing by the caller, even
if the callee does not answer the phone. Now, in the 21st century,
Schulzrinne (2005) describes one of the goals of context-aware commu-
nication as how to make the phone not ring except in an appropriate
manner; that is, the phone should not ring in some callee situations but
should ring in other situations.

Schilit (2002) noted several problems of today’s ubiquitous communi-
cation technology, such as irrelevant communications, annoying disrup-
tions, caller unaware that the callee is available for interaction, interaction
overload (too much “junk” information or calls at the wrong time), and
device overload (with the proliferation of device types), and defines
context-aware communication as applying “knowledge of people’s con-
text (and activities) to reduce person-to-person communication barriers.”

6.1.1 Application Types

The use of context for five application types has been noted in Schilit et
al. (2002):

B Routing: Messages or voice calls can be routed to the appropriate
destination. For example, if the location of the callee can be
determined, the phone in the right room can ring (and in a
distinctive tune) for the person. Also, call forwarding can be
controlled based on other context attributes such as who they are
with, where they are, what they are doing, and what the time of
day it is. The idea of routing messages or calls to the appropriate
device depending on user context is developed in the Ubiquitous
Message Delivery (UMD) (Spreitzer and Theimer, 1994) and Mer-
cury systems (Ranganathan and Lei, 2003). The UMD system will
send the message to an appropriate terminal display or wait for a
suitable situation or terminal to be available. The Mercury system
can provide the following scenarios:

B Route an incoming call to a one-way device if a two-way device
is not available. For example, the call recipient who is away
from the office and not running an instant messaging (IM) client
can be paged.

Context-Aware Addressing and Communication ® 129

B Automatically migrate a call to a different device because of a
change in context during the communication session. For exam-
ple, a person talking on a cell phone on the way to work can
continue the conversation on a desktop IM client after arriving
at the office.

B Exploit call priorities: For example, a highly anticipated call can
be allowed to come through, causing the current call to be placed
on hold.

B Addressing: Entities can be addressed based on their context
instead of their unique identifier or names, as is done traditionally.
This can be convenient when the identifiers are not known in
advance or when this is simply easier. Two examples in Schilit et
al. (2002) are a context-aware mailing list system, in which one
can specify that a message be sent to “all people at a given
location” or members of a research group currently in a building,
and the PARCTAB virtual whiteboard, in which a group of people
is virtually delineated by common location and membership in a
project, so that all individuals in such a group can effectively view
similar items.

B Messaging: By knowing the situation of the receiver or addressee,
the right message can be delivered at the right time and in the
right form, be it a reminder message or an incoming e-mail. For
example, the MIT project Hanging Messages! (Chang and Maes,
accessed in 2001) enables messages to be received at the right
location and time. This application type is different from routing
in that the message might have been routed to the right room (say,
in which the receiver is currently located), but the message may
still need to be delivered in an appropriate way according to the
receiver’s current situation in the room (e.g., the message must be
delivered in a nonintrusive manner if the user is in the room and
in a meeting). The Context-Aware Messaging Service (CAMS) sys-
tem (Nakanishi et al., 2000) takes into account the addressee’s
communication context, including the schedule, location, and avail-
able media support, and selects the most suitable phone number
or e-mail address for redirecting incoming messages. CAMS inte-
grates a computer telephony integration (CTI) server, a positioning
system based on Personal Handyphone System (PHS) and a sched-
uler (which indicates the user’s activity at a given point in time,
assuming that the schedule is indeed followed). The user carries
a PHS handset and a PDA. A user can register rules about what
to do with messages. For example, rules can be specified for the

U http://alumni.media.mit.edu/~elchang/HM/.

130 m Context-Aware Pervasive Systems

system to redirect calls to a voice messaging system when the user
is lecturing at a university or having a meeting and to redirect
messages to the right e-mail addresses. The user can edit his or
her schedule via a form. The comMotion system (probably one of
the earliest such context-aware communication systems) (Mar-
masse, 1999) aims to deliver reminders, to-do lists, messages, and
other information in the most timely and relevant context. The
message engine can also deliver news, weather reports, and traffic
reports from Web sources to the user. An example of timely
information delivery would be the user requesting a list of movies
showing at a local cinema when leaving from work on a Friday
evening. In the system, user position is obtained via a GPS system,
and locations (GPS data) are labeled by the user as “home,” “work,”
“grocery store,” and so on.

B Providing awareness of callee or receiver: By understanding the
situation of an individual, one can determine if the individual is
available to talk. Such presence awareness is similar to the idea
of status in Instant Messenger systems. With the Live Contacts
system (Henri ter Hofte et al., 2004) running on pocket PC phones,
one could see presence information of listed contacts, including
the current Messenger status (e.g., busy, online, away, on-the-
phone, etc.), current calendar information (e.g., work and nonwork
times, appointments, etc.), and last-known location information
(e.g., at work, at home, on the move, or unknown). On selecting
a contact on the phone’s interface display, one can initiate contact
(via telephone call, SMS, IM, or e-mail) or ask to be reminded to
make contact at a nominated future time. The system is based on
a client—server architecture with the devices querying Live Contact
servers for updates on contacts. Collaborative work applications
may also utilize presence awareness to optimize work interactions.
Also, VoIP spam or instant messaging (IM) spam can be prevented
using such presence technology (Schulzrinne, 2005). Related work
on using sensors to gauge human interruptibility (Fogarty et al.,
2005) is also useful in this application type.

B Screening: Filtering or redirecting calls based on the situation of
the receiver relates to the previous application type. In this case,
it is not only that the system informs the caller of the callee’s
situation but also takes action automatically on perceiving that the
callee is unavailable. We have this idea in use for context-aware
mobile phones, where if the user (with his or her phone) is in a
meeting, then the phone can be put in a certain mode, virtually
filtering the call.

Context-Aware Addressing and Communication ® 131

Note that the aforementioned application types may be combined in
a specific application. For example, a system could route messages using
context as well as filter appropriate messages. The Connector system
(Danninger et al., 2005) maintains awareness of the users’ activities and
social relationships to help mediate proper connections at the right time.
Presence, messaging, and filtering are supported; the system provides
users with contextual cues about availability of callees and uses context
to adapt the behavior of devices to avoid inappropriate interruptions. The
idea of Connector is to facilitate appropriate and opportunistic connections
for both parties. Context information used includes address book with
contact information, user preferences and settings, and three other types
of information (whether the user is in the smart room, whether a meeting
is taking place in the room if the user is in there, and whether the user
is outside the smart room and in a vehicle). Face recognition technology,
vision-based techniques, and acoustic signals captured by a user-carried
microphone are used to identify the user’s context and current environ-
ment. Four interaction levels are supported: “available for talk,” “available
for instant message,” “available for e-mail,” and “available for voice mail.”
A distinctive feature of this system is the use of proactive software agents,
where, if a contactee becomes available, the agents automatically find out
if there are pending contacts to make connections.

Moreover, as in Schilit et al. (2002), different systems might have
different levels of autonomy in acquiring context — the user might specify
this, or the system automatically detects this via sensors — and in per-
forming the action, given that the context is known; action is taken
automatically or manually. These two dimensions provide a means to
classify context-aware communication systems.

6.1.2 Call Services

Although communication in the aforementioned systems can mean IM,
telephone, e-mail, or other mediums, there has been work specifically on
using context for handling phone calls from the perspective of call services.
A technique for implementing context-communication services for IP
telephony is presented by Gortz et al. (2004). The system enhances the
Session Initiation Protocol (SIP),? a signaling protocol for session and call
control with context-awareness capabilities. Control of services is specified
in scripts written in the XML-based Call Processing Language (CPL). Calls
can be diverted or passed through to a colleague, depending on the
context of the callee according to conditions specified, using special tags,

2 http://www.cs.columbia.edu/sip/.

132 m Context-Aware Pervasive Systems

in the scripts. Next-generation mobile phones that use SIP can utilize such
functionality, or a third-party call control proxy server can be used. Context
information employed include indoor location sensing technologies
(including Bluetooth, infrared/radio frequency badges) and the iCalendar-
compliant applications, and are acquired via a context server consulted
when a phone call arrives; an incoming call executes the CPL script,
which, in the course of processing, calls the context server. A similar
system using a SIP proxy and a comprehensive context manager is
presented by McFadden et al. (2005). Context employed include not only
location but also the status of the user, communication mode (e.g., voice,
text, or video) available to the user, and device battery power. Context
information is represented in the Context Modeling Language (CML). Such
context-aware communication has also been implemented for VoIP (Kanter
and Gustafsson, 1999). Context-aware communication to incorporate con-
text into service provisioning and service adaptation is also the aim of
the European Autonomic Communication project.’

6.1.3 More Applications

Context-aware communication systems can go further and perhaps provide
an on-the-fly translation facility implemented on a device carried by a
user if the language abilities of the speakers and listeners can be auto-
matically ascertained via some mobile profile exchange mechanism. Some
communication systems go further and aim at providing not only a
translation facility but also context-dependent background knowledge to
aid conversations, as in the Telme wearable computer system (Sumi and
Nishida, 2001). Context is useful in a translation system in selecting the
appropriate target language and in providing background knowledge
suitable for the conversation at hand. In Telme, a novice and an expert
can have a conversation, with the novice being aided by knowledge from
the system.

There has also been early work on using such context-aware commu-
nication profiling to aid interaction with severely disabled users (Davis et
al., 2003). The system stores information from conversations, such as topics
last discussed and mood last generated. Such historical information and
profiles of people provide context to guide future conversations. Automatic
translation of speech into sign language or text as displayed on a device
can also be of use in talking to deaf persons.4

3 http://www.autonomic-communication.org/.
4 See http://www.aaai.org/AlTopics/html/machtr.html for links to projects that trans-
late English into sign language.

Context-Aware Addressing and Communication ® 133

6.1.4 Summary

In summary, there is tremendous opportunity in using context to enhance
people-to-people communication. We have reviewed some work in the
area, but many prototypes have been developed embodying particular
ideas. However, there has not been extensive commercial exploitation of
the ideas. Moreover, acquiring suitable context information is still very
much a research topic, identifying not only what context information can
best be used (e.g., in terms of cost and ease of deployment) to infer a
user’s situation but also how to best acquire such information, integrating
appropriate sensor information and information resources (e.g., calendar
and electronic diary). There is also the issue of reliability and accuracy
in inferring the user’s situation and what can be done if the system guesses
incorrectly the situation of the user.

6.2 CONTEXT-AWARE ADDRESSING AND COMMANDING
FOR OBJECTS

We now turn to artifacts and how context can be employed for people
to naturally address or interact with such smart artifacts.

6.2.1 Application Types

Similar to the spirit of addressing in people-to-people communication,
context can be used to address artifacts and to group artifacts together.
For example, one could issue commands such as “turn off all appliances
in the living room” and “turn down the heater in my son’s room.” In the
former command, common location context is used to group devices
together as well as to identify which devices to turn off. The latter
command needs a knowledge base of context information to be under-
stood. If each device knows of its own lifetime, one can ask all the devices
in a living room, “which of you is more than three years old?”

Commands can similarly be issued to devices to be performed (or
delivered to the device) only in an appropriate context of the device. For
example, we can issue a command to a new advanced television to “turn
off if no one is in the room after the news has been recorded,” and the
command “turn off” will be performed in the right context.

Hence, we note at least two application types: addressing and context-
aware commands. We can have commands that utilize both these aspects,
such as “when the 8 p.m. news is finished and if no one is watching,
turn off the television next to the chair John is sitting in.” In this command,
the television is addressed by its context (“next to the chair John is sitting
in”) assuming that there is more than one television set, so that context

134 m Context-Aware Pervasive Systems

is used to distinguish one from another, and the command “turn off” is
only performed in the right context (“no one is watching” and “after the
8 p.m. news”). Context ensures that commands are delivered in the right
way and at the right time to appliances. Proper interpretation of the
commands is needed to determine which context attributes are being
referred to in the command, and, once the particular attributes are deter-
mined, the appropriate sensing and reasoning subsystems can be
employed. An infrastructure that supplies context information such as
those mentioned in Chapter 2 can be used in these application types.

6.2.2 A View from Situation Semantics

A topic of linguistic theory provides some clarity about the nature of such
commands. Commands are typically issued by humans in a particular
situation, in which the command is given in the form of speech, gesture,
via some device such as a keyboard or mouse, or some combination in
a multimodal fashion. In the relational theory of meaning, or the situation
semantics (Barwise and Perry, 1983) approach to giving meaning to
utterance, the situation of utterance or the discourse situation is made
explicit. An utterance W has meaning as a relation denoted /W] between
the discourse situation ¢ and a mapping ¢, and another situation e (roughly
representing the content of the W in context d) represented by a tuple
of the form d,c/Wie.

In other words, human utterances (whether a command, assertion, or
some other form of speech) have always been within some physical-world
situation. And humans are able to perceive such situations (most of the
time) and use them to understand utterances in their proper context. In
the understanding of such utterances (or commands) by machines, the
challenge is in the machines’ perceiving the context surrounding the
utterances. Perceiving context by machines is exactly the aim of context-
aware computing.

Such a view presents a strategy for interpreting, in context, commands
issued to devices, appliances, or everyday objects with embedded proces-
sors. Suppose W is a command uttered by a person and an infrastructure
has sensors to determine the situation of the utterance, including, say, which
room the user is in, what devices surround the user, and which device the
user is likely to be issuing the command to (via the orientation of the user’s
body, what the user is looking at, pointing at, or touching). The mapping
¢ maps particular nouns and verbs in the user’s command to what might
be referred to in the user's context. For example, a person issues the
command “turn off” while looking at a particular lamp. With appropriate
sensing mechanisms, a system can use context to translate the command
into an appropriate operation on the lamp. We are assuming that the lamp

Context-Aware Addressing and Communication ® 135

exposes an API (e.g., hosting Web services in an embedded server) with
which commands can be issued from a system to the lamp. The sensing
and thinking subsystem figures out that the person is looking at the lamp,
and the acting subsystem invokes a service call to turn the lamp off.

There is also a sense in which such commands are polymorphic, akin
to how a method may be polymorphic in object-oriented languages, in
that the method in an abstract class takes on the meaning of the method
as defined in the concrete subclass. This also corresponds to what linguists
call efficiency of language, in which the same phrase can be reused in
different situations with similar meanings but different results depending
on the situation at hand. For example, the command “switch on lights,”
when issued in different rooms, has similar meaning in the regard to what
the command issuer intends, but probably does not mean exactly the
same, as the command translates to a particular operation when issued
in one room and to a different operation when issued in a different room
(because each room has its own lights). It is the situation of utterance
that distinguishes one use of a phrase from another use of the same phrase.

For illustration, let us consider simple phrase commands for objects of
the form <operation> <device>. Examples of such simple commands are
“turn on lights” and “open drapes.” Such commands may be an utterance
by a person “heard” by the system or input via a textual or other interface.
The issue then is how a system would make sense of the command.

We identify four stages a system should support for processing these
device commands:

1. Supply an interpretation: The commands must be understood by
the system in some way and assigned semantics; one way to do
this is to consider the situation (including the identity of the person
issuing the command, the circumstances of this person, where the
person is located, etc.) in which the command is issued. Consider
the command “turn on light”; the system needs to figure out which
light the user would have in mind (perhaps attempting to discover
if such a device is in the user’s current environment) and what
operation on the light “turn on” describes.

2. Explore the effects of the command: It is useful to understand the
effects of the command before they are executed; the idea is that
the system can reason with these commands and assess their
possible effects before actually executing them, for example, to
guard against undesired behaviors or to determine the likelihood
of success.

3. Execute the command: The system executes the commands based
on its interpretation of the command and its judgment that the
effects are “safe.”

136 m Context-Aware Pervasive Systems

devices

devices

sensors
command issued
and “heard”

context-aware
command
processor

devices

smart space

Figure 6.1 Illustration of a space in which there is a context-aware command
processor.

4. Ascertain if the intended command succeeded: The system can
check to see if the command produced the intended effects,
perhaps by perceiving the situation after the command is com-
pleted (e.g., checking light sensors if the command is to turn the
lights on), by obtaining status information from the device itself,
or both ways.

Figure 6.1 depicts a space (simply termed a smart space in the sense
that it can intercept and understand user commands) in which there is a
processor for context-aware commands that attempts to execute com-
mands issued by the speaker. The processor interprets the user’s com-
mands, translates it into an operation on a device, and invokes the
operation on the device. It also queries sensors and devices to ascertain
if a command has been successfully completed. In practice, the processor
can be a server running in each smart room that continuously listens for
user commands and has access to devices. We are assuming that the
controllable or commandable devices have an API or a Web service-like
interface on which operations can be invoked. Future devices might be
controllable via an embedded Web server hosting Web services. Also,
UPnP> provides such an interface to devices (e.g., the example of a toaster

> http://www.upnp.org/.

Context-Aware Addressing and Communication ® 137

with a programmatic interface in Jeronimo and Weast (2003), and Sun’s
Jini provides a Java-based object model of devices.®

Although, to the author’s knowledge, no such context-aware command
system has been widely deployed, the context-aware speech system called
CASIS (Leong et al., 2005) comes close, using the user’s utterance situation
to help in speech understanding. In CASIS, physical context acquired via
sensors are used to disambiguate parts of speech in potentially ambiguous
commands (e.g., “switch on that”) to control devices within a room. The
problem tackled in CASIS is formulated as computing the action (among
a list of possible actions) with the highest probability, given the speech
input and the current context of the speaker. An experiment was carried
out with devices in a room, such as lights, projectors, projector screens,
a video output switcher, a blind, and a DVD player, all controllable via
speech commands. A total of 35 possible actions involving these devices,
such as switching on the lights, lowering screens, switching on the
projector, etc., were permitted. Context information used in the experiment
was command history, device status, brightness in the room, speaker
location, seat occupancy, sound level, and speech direction. The experi-
ment showed how context can be used to resolve ambiguous commands
with roughly 50 to 70 percent accuracy.

Using context for disambiguation may work in particular situations
but is difficult to address in general. For example, imagine stepping into
a room in which there is a table lamp, several ceiling lights, and a set
of wall lights. Stepping into a completely dark room, the user could issue
a command such as “switch on lights,” which is ambiguous and could
mean all the lights or only a particular light. Or, perhaps, in this case,
even the user is unsure of what is intended, as long as there is some
light. In such commands, perhaps a default behavior needs to be instru-
mented in the system, which can differ from one situation to another (or
one room to another), or adjustment commands can be employed (e.g.,
“more,” “less,” “reduce”).

Such commands are reminiscent of science fiction movies in which
humans issue commands to devices or the computer to perform tasks,
and the system is able to figure out which device is involved and what
operation is being intended on the device. CASIS and works of others
such as Loke et al. (2004) are initial attempts toward such systems.

6.2.3 Summary
In summary, the aim is to be able to command appliances, devices, and

everyday artifacts naturally, and machine-understanding of context of

¢ http://www.jini.org/.

138 m Context-Aware Pervasive Systems

utterances can aid this endeavor not only in the interpretation of the
content of the command but also in identifying which device the user is
addressing the command to and what kind of operation is being intended.

6.3 CONTEXT-AWARE COMMUNICATION FOR
SOFTWARE AGENTS

Intelligent software agents is an active area of research, and interagent
communication with specialized languages based on speech act theory
have enjoyed much attention (e.g., Labrou et al., 1999). There has been
work on routing messages to mobile agents, which is certainly more
challenging than in the case of stationary agents. This section focuses on
addressing agents.

6.3.1 Addressing Agents via Context

Software agents are usually provided with a system-generated unique
identifier for addressing. In the rest of this section, we consider the issue
of using context to address software agents, in particular, mobile software
agents, which adds the complexity of mobility and therefore the need to
update changing context information about such agents. In principle, it
is not difficult to imagine the use of the platform and mechanisms we
consider here for addressing objects (devices and appliances) and people,
but the illustration here involves messages based on an event notification
system for software agents, first introduced by Loke et al. (2003).

Although we allow our agents to be mobile, not all agents require
such a property, but agent mobility has been recognized as beneficial
in a number of large-scale distributed applications, and a sizable number
of mobile agent toolkits have been developed for mobile multiagent
applications.

The ability to address or refer to software agents using a variety of
methods can provide flexibility and abstraction for system developers,
particularly when the system being built is dynamic and large, involving
a huge number of agents, and in the case of applications in which the
agents are intended to inhabit computers embedded in physical environ-
ments (e.g., agents roaming over hosts throughout an intelligent building
as intended in the Hive project”).

Context can be used to send messages to a collection of agents based
on their current context (even the physical context of the agent hosting
computers), without knowing the precise identities of the agents. For
example, as noted in Loke et al. (2003), we can send a message to all

7 http://hive.sourceforge net/hive-asama.html.

Context-Aware Addressing and Communication ® 139

agents currently on hosts situated on the second floor; alternatively, we
want to send a message to all agents launched by, and belonging to, a
user, to all agents currently running on hosts with decreasing bandwidth,
to all agents currently on hosts that provide a particular kind of E-service,
to all agents that have not yet completed their tasks, or to the host nearest
to a particular user. We can also ask agents for their identifier via a query
such as “send me your name if you are on a host on the third floor.”
Such context-based addressing and messaging will be useful for distributed
monitoring and management applications.

The mechanism in Loke et al. (2003) for context-based addressing of
agents is an event-notification system called Elvin and relies on agents
truthfully and proactively reporting, or notifying the event server of, their
current context. The event server then forwards messages to the agents
by matching the context as reported by the agents with the context
specified in the message. Elvin uses the mechanism called content-based
addressing, in which notifications (a set of attribute-value pairs) are
forwarded to subscribers whose subscriptions (in the form of string-
matching expressions on values of attributes) match the content of the
notifications. For example, a message intended for agents running on the
host nearest to a particular user will be sent to the agents reporting that
they are on such a host. The actual context utilized and the reporting
frequency will depend on the specific agent application. Agents can
subscribe to the server for particular messages and listen for messages
intended for a particular context. Or a user who wants to send messages
to the agents can do so by sending a notification to the central server.
Figure 6.2 illustrates the architecture of agents whose messaging is sup-
ported by the Elvin server.

The mechanism described earlier has been used to define namespaces
in an ad hoc fashion over collections of agents. For example, one can
create a namespace that relates to the geographic position of machines
hosting agents. A building can be divided into logical areas such as
floorl, floor2, floor3, floor4, and floor5, and each floor can be subdivided
further into rooms, rooml, room2, etc. One can then refer to “agents
currently in floor4 OR floor5, who belong to Jack” AND send messages
to such agents.

6.3.2 Applications

Such a mechanism can be explored for addressing robots and, in particular,
swarms of robots, where it is impractical to individually address each one
by name. Of course, the use of context-based addressing is merely an
abstraction — each robot or software agent still requires a unique system-
given identifier (e.g., an IP address for a computer running on the robot)

140 m Context-Aware Pervasive Systems

receive

messages
csesceedp

reporting
context

reporting
context

. \
receive (
messages L\

Figure 6.2 Elvin content-based addressing for agent context-based addressing.

for messaging purposes. For example, we can envision teams of robots
searching for survivors in a tsunami-hit city, where one could refer to
such robots by their current location, what objects they are currently in
close proximity to, their current activity, current power levels, capabilities
they have, or current findings. Wireless connections to an event-notifica-
tion server will be useful with robots continually reporting their context
via a large number of small messages. For efficiency, deltas or changes
in context can be reported rather than repeating previous unchanged
reports. Similarly, a mixed team of human workers and robots might be
addressed via an ad hoc namespace formed using their current contexts.
We also note that the event-based mechanism described here can also be
adapted for people and objects.

6.4 SUMMARY AND CONCLUSION

In this chapter, we have presented different ways in which context can
be employed to enhance communication between people, between people
and artifacts, between people and agents, and between agents. These
methods reflect the general idea that communication typically occurs
within some context rather than in a vacuum, and this context can be
captured and exploited.

Context-Aware Addressing and Communication ® 141

REFERENCES

Barwise, J. and Perry, J., Situations and Attitudes, Cambridge, MA: MIT-Bradford, 1983.

Chang, E.L. and Maes, P., Hanging Messages: Using Context-Enhanced Messages for
Just-In-Time Communication, available at http://alumni.media.mit.edu/~
elchang/HM/docs/hm_brief.pdf.

Danninger, M., Flaherty, G., Bernardin, K., Ekenel, H.K., Kohler, T., Malkin, R., Stiefel-
hagen, R., and Waibel, A., The connector — facilitating context-aware commu-
nication, Proceedings of the ICMI, Trento, Italy, October 2005, ACM Press.

Davis, A.B., Moore, M.M., and Storey, V.C., Context-Aware Communication for Severely
Disabled Users, CUU, Vancouver, British Columbia, Canada, November 2003,
ACM Press.

Fogarty, J., Hudson, S.E., Atkeson, C.G., Avrahami, D., Forlizzi, J., Kiesler, S., Lee, J.C,,
and Yang, J., Predicting human interruptibility with sensors, ACM Transactions
on Computer-Human Interaction (TOCHD 12(1), 119-146, March 2005.

Gortz, M., Ackermann, R., and Steinmetz, R., Enhanced SIP communication services
by context sharing, Proceedings of the Euromicro 2004 Conference, August
2004, pp. 272-279, available at http://phoenix.labri.fr/documentation/sip/Doc-
umentation/Papers/Programming_SIP/Paper_Publication_and_Draft/gortz.pdf.

Henri ter Hofte, G., Otte, R.A.A., Kruse, H.C]J., and Snijders, M., Context-aware
communication with live contacts, Proceedings of the Conference on CSCW,
Chicago, IL, November 2004, ACM Press.

Jeronimo, M. and Weast, J., UPnP Design by Example: A Software Developer’s Guide
to Universal Plug and Play, Intel Press, U.S.A., 2003.

Kanter, T. and Gustafsson, H., VoIP in context-aware communication spaces, Proceed-
ings of the 1st International Symposium on Handbeld and Ubiquitous Comput-
ing (HUC), 1999, Lecture Notes in Computer Science 1707, Springer-Verlag,
pp. 365-367.

Labrou, Y., Finin, T., and Peng, Y., Agent communication languages: the current
landscape, IEEE Intelligent Systems 14(2), 45-52, 1999.

Leong, L.H., Kobayashi, S., Koshizuka, N., and Sakamura, K., CASIS: a context-aware
speech interface system, Proceedings of the 10th International Conference on
Intelligent User Interfaces, 2005, ACM Press, pp. 231-238.

Loke, S.W., Padovitz, A., and Zaslavsky, A., Context-based addressing: the concept
and an implementation for large-scale mobile agent systems using publish-
subscribe event notification, Proceedings of the 4th IFIP International Confer-
ence on Distributed Applications and Interoperable Systems (DAIS 2003), Paris,
Stefani, J.-B., Demeure, 1., and Hagimont, D., Eds., 2003, Springer-Verlag,
Lecture Notes in Computer Science 2893, pp. 274-284.

Loke, S.W., Stanski, P., and Syukur, E., Adding context-aware behaviour to almost
anything: the case of context-aware device ecologies, Proceedings of the Work-
shop on Context-Awareness at the 2nd International Conference on Mobile
Systems, Applications and Services (MobiSys’04), Boston, MA, 2004.

Marmasse, N., comMotion: a context-aware communication system, Proceedings of CHI
1999, ACM Press.

McFadden, T., Henricksen, K., Indulska, J., and Mascaro, P., Applying a disciplined
approach to the development of a context-aware communication application,
Proceedings of the International Conference on Pervasive Computing and Com-
munications, 2005, pp. 300-300.

142 m Context-Aware Pervasive Systems

Nakanishi, Y., Tsuji, T., Ohyama, M., and Hakozaki, K., Context aware messaging
service: a dynamical messaging delivery using location information and sched-
ule information, Personal and Ubiquitous Computing 4(4), 221-224, 2000,
Springer-Verlag.

Ranganathan, A. and Lei, H., Context-aware communication, I[EEE Computer 36(4),
90-92, 2003, IEEE Computer Society Press.

Schilit, B.N., Context-Aware Communication — Tutorial at Pervasive 2002, available at
http://seattleweb.intel-research.net/people/schilit/Tutorial%20T3%20-
%20Context- Aware%20Communication.ppt.

Schilit, B.N., Hilbert, D.M., and Trevor, J., Context-aware communication, IEEE Wireless
Commumnications, October 2002, IEEE Press.

Schulzrinne, H., Making the phone not ring, presentation at the Internet2 Spring
Meeting, 2005, available at http://pic.internet2.edu/20050504-smm-session/
20050504-hgs-pic.pdf.

Spreitzer, M. and Theimer, M., Architectural considerations for scalable, secure, mobile
computing with location information, Proceedings of the 14th International
Conference on Distributed Computing Systems, 1994, IEEE Computer Society
Press, pp. 29-38.

Sumi, K. and Nishida, T., Telme: a personalized, context-aware communication support
system, IEEE Intelligent Systems 16(3), 2-8, 2001, IEEE Computer Society Press.

7

CONTEXT-AWARE
SENSOR NETWORKS

Sensor networks are increasingly important for numerous applications
from smart kindergartens to intelligent traffic management as mentioned
in Chapter 2 and Akyldiz et al. (2002), and in understanding regularity in
everyday life behavior (Clarkson, 2002). There has been tremendous
excitement about sensor networks in recent years with research into the
different layers of technologies from networking protocols, hardware, and
operating systems to programming models. Sensor networks are related
to context-aware computing in at least two ways. First, sensors are used
to acquire contextual information for entities. Second, sensors themselves
can be made to be aware of their own context. This chapter introduces
the notion of context-aware sensors whose behavior can be changed in
response to their current context, thereby allowing power-conserving
actions to be performed with the sensors depending on the situation the
sensors are in.

We begin the chapter by introducing the concept of the context-aware
sensor, making reference to related work. To illustrate how such a concept
can be realized, we propose a software architecture for such sensors and
then provide an application scenario to illustrate the architecture.

7.1 CONTEXT-AWARE SENSORS: THE CONCEPT

Each sensor comprises hardware with limited computational and network-
ing capabilities. A wireless sensor network (WSN) is a combination of low-
cost, low-power, multifunctional miniature sensor devices consisting of
sensing, data processing, and communicating components, networked
through wireless links. In a typical application, a large number of such

143

144 m Context-Aware Pervasive Systems

sensor nodes are deployed over an area with wireless communication
capabilities between neighboring nodes. Forming a mesh network, nodes
can then relay sensed information back to base stations. Although low
sensor costs, miniaturization, processing capabilities, and portability are
enabling factors, energy constraints of sensors are a constant challenge
because of generally slow progress in increasing battery capacity.

Activities of a sensor require energy (or use of battery power), whether
for sending or receiving data or sensing. The idea with context-aware
sensors is that if sensors could know more about their own context, then
they could adapt their behavior and function only when needed and to
the extent needed in the current circumstances, thereby becoming more
prudent about how they should spend their energy.

The work of Elnahrawy and Nath (2004) proposed the novel concept
of sensors, also labeled context-aware sensors, which can be aware of
their history of sensed values, as well as of the history-sensed values of
neighboring nodes. Aware of such readings, a sensor can construct cor-
relations between its own sensed values and the sensed values of neigh-
boring nodes as well as its own past values. Such correlations can then
be used to predict future sensed values and to detect outliers and faulty
sensors, and to fill in missing values. This awareness was not used to
help reduce battery power.

The work by Cardell-Oliver et al. (2005) illustrates the context-aware
sensor concept. In a sensor network’s application to monitor soil moisture,
the frequency of measurements taken varies according to the rainfall;
during wet periods, measurements are taken more frequently, whereas
during dry periods, measurements are taken less frequently. Rain sensing
nodes (i.e., rain gauge) can detect a high rainfall event (say, exceeding
1 mm of rainfall), which is then used to determine how active the soil
moisture probes should be. In this way, the soil moisture probes only
need to sample more frequently when significant changes in soil moisture
conditions are more likely. The advantage of this is the energy savings
for the soil moisture probes. Given the large difference between energy
consumption during the sleep (inactive) and active states of a sensor node
(for a Berkeley mote sensor hardware, power draw can be 5 to 20 mA
during the active period and 5 pPA during sleep periods) and, overall, if
less data needs to be transmitted, the energy savings can be many times
greater than without such selective activity.

The same idea can be applied to other applications. For example, in
the habitat-monitoring project at Great Duck Island (Mainwaring et al.,
2002), sensor data patterns show that petrels are unlikely to enter their
nests during the light phase of a 24-h cycle. This indicates that we would
require less monitoring of activities in the nests during that period of time.
Hence, adapting to this event, the monitoring sensors in the nests could

Context-Aware Sensor Networks ® 145

reduce sampling rates during those periods. This approach is context-
aware sensing because the sensor node is made to adapt its operations
based on patterns or events (as perhaps detected by other sensors) that
occur in the physical environment.

The proposed CASN (Context-Aware SensorNet) middleware (Huaifeng
and Xingshe, 2005) takes seriously the idea of context-aware sensors that
use available contexts and adapt their behaviors. They advocate the use
of fuzzy rules to map detected contexts to actions. Although their work
is still in the design stage, we note the use of context in CASN to reduce
energy usage and to automate changes in sensor behaviors (using context
and fuzzy rules).

The work by Khai et al. (2005) investigated a general framework for
supporting such context-aware sensors with energy savings in mind, and
the rest of this chapter describes this framework and an application scenario.

7.2 A FRAMEWORK FOR CONTEXT-AWARE SENSORS

As in many context-aware applications, context could be used to trigger
information specific to users, providing users with a more informed
decision space and aiding user decisions. One can apply the concept to
sensor networks for reducing energy consumption and thereby prolonging
battery life, as later demonstrated through an implementation, with results
and applicability to real-life applications also included.

A simplified view of the stages in this process would involve analyzing
sensor data streams for contextual information, mapping the discovered
context into respective triggers, and later using the triggers to execute
power management functions in concerned sensors where appropriate.
The general idea underlying the context-aware sensor framework is (1)
establishing patterns for controlling sensor activity (either programmed by
developers or acquired by learning from sensor data) and (2) using the
patterns as triggers of energy-saving operations on sensors. For instance,
rules such as “in response to low habitat activity, put the sensors to sleep”
or “in response to high rainfall, have the sensors highly active” might be
programmed by application designers.

7.2.1 Sensor Roles

In the architecture, we assume that sensor nodes can assume different
roles in a sensor network. For instance, we can assign certain motes (i.e.,
a sensor node that is a Berkeley mote) to only perform sensing operations
and, at the same time, control other motes in their vicinity. Conversely,
other sensor nodes might assume the role of sensing information only
and not be able to give instructions. This is illustrated in Figure 7.1.

146 m Context-Aware Pervasive Systems

Sensors being
controlled with context

(O 4

Sensors used for
determining context

B

Figure 7.1 Sensor monitoring roles.

Such a simple role differentiation in a sensor network would enable
us to power-save motes although the basic sensing operations are still
preserved in different sensor patches or arranged sensor groups. Control
instructions that are possible with sensor nodes range from minimum
control by means of adjusting sensing properties to higher control by
commanding motes to sleep for a fixed period of time, waking up only
at subsequent clock cycles. The energy states of sensors that can be
manipulated are further described in the following text.

7.2.2 Categorizing Energy Consumption

A finite-state machine (FSM) can be utilized to model the energy states
of sensor nodes. Here, we review the main sensor power states and the
types of commands that will yield a transition change. We also focus on
expressing more generally the requirements that enable power savings in
any sensor network to discover state transitions required to achieve
maximum energy savings.

7.2.2.1 Input Alphabet

The current context when discovered in the system activates a triggering
rule, enabling commands to be sent to prespecified sensor nodes. The
input alphabet is represented by such commands, which can be under-
stood by any type of sensor and differs for different sensor types. For
mica2 sensor nodes, the input alphabet is formed by the set of the
following possible commands:

1. Sleep <x seconds>.
2. Message size adjust <msg_type>.

Context-Aware Sensor Networks ® 147

Energy States

mand 2/3/4

Command 2/3/4/5

Figure 7.2 FSM for energy states.

3. Transmission frequency set <per y millisecs>.
4. Set radio strength <z hertz>.
5. Default operation.

Figure 7.2 shows the states and transitions, each transition labeled with
one or more of the preceding five commands that cause the state transition.

7.2.2.2 Output Alphabet

The output of a state transition is the actual sensor operation on the sensor
that results in a change of power state. Basically, in the FSM model, a
command from the input alphabet causes an operation on the sensor,
which, in turn, causes the change in power consumption states. Hence,
in the model, we simply specify a direct correspondence between the
input alphabet and the output alphabet. For instance, the sensor operation
sleep <x seconds> could change a sensor’s power state from active to
sleep mode for a period of time. The output alphabet is therefore one
low-level sensor operation or a collection of such operations that enables
this change of state, or any operation that could cause a status change in
the course of a sensor’s current operation.

148 m Context-Aware Pervasive Systems

7.2.2.3 Energy States

A state in the FSM represents the current power state of a sensor, which
is determined by the current command operated by the sensor. Here,
the sensors represented include sensors being controlled with context,
sensors used for determining context, or both. The state diagram is shown
in Figure 7.2.

The five power states used here are as follows:

B Sleep: A power state with a fixed period of inactivity; for instance,
motes sleep for maximum power savings. A mote in this power
state will not respond to messages from other motes or the control
application. It is assumed that for motes reaching this state, the
triggered context is to have an effect only for a known period of
time, and when the time limit has expired, the mote will exit this
state and go back into normal operation mode.

B Idle: A sensor is in idle state when it is maintaining operation at
a lower energy cost relative to its normal operating mode. For
instance, it could have reduced communication frequency that
reduces the number of messages exchanged between the server
and the motes or, on the other hand, a reduced computation load
when sensors aggregate data when possible and send packets of
reduced sizes when it is known that that particular information is
redundant. It is a mode whereby a sensor operates with a subset
of minimum operating functionalities to stay alive.

B Highly_Active: A sensor can be highly active while monitoring a
phenomenon, for example, to provide a higher sampling rate.

B Active: A normal mode, where motes are operating under normal
conditions with no power savings.

B Dead: A dead state represents a mote that has failed in operation,
for instance, when it is energy depleted or has died because of
external factors such as being destroyed by a fire. This is not a
power state that falls under the control of our system. It is an exit
state for nodes that have failed in operation.

7.2.3 Architecture

The framework considers (1) a setting of groups of sensors that can
provide context as well as send and receive commands (as described
earlier), (2) several support services that provide communication between
sensors and the system, and (3) components that provide the core func-
tionalities for context discovery and use.

Programming of the sensor nodes is done in nesC, a variant of the C
programming language for embedded sensor network devices under the

Context-Aware Sensor Networks ® 149

TinyOS operating system. To interface with the sensors, the Java 1.1 API
is used for modules that provide data collection, analysis, and communi-
cation between the motes and the base station. This section describes the
design and implementation of the individual components that constitute
the system, and how the components interact. Figure 7.3 shows the
architecture of the framework.

The major components of the framework are described as follows.

Communication server: The communication server acts as a mediator
between the base station and the sensors; it receives raw data
packets that arrive from the sensors and parses them into a format
recognizable by the application. Similarly, any control messages
from the application to the sensors are parsed at the communica-
tion server. In essence, the communication server provides a
unified protocol of communication for applications (implemented
in a high-level language), which need to send and receive com-
mands from sensors implemented in a low-level language, TinyOS
in this case.

Context locator service: To interpret the current context from the raw
sensor readings obtained, the current framework employs prepro-
grammed if-else condition rules. The rules are used to decide
whether certain context has been acquired. In the system, useful
context information is mostly secondary context formed by conjunc-
tions of different primary context information. For instance, if tem-
perature readings fall below a certain threshold, the primary context
is cold, whereas the useful secondary context could be cold_weather
when sensors in a group detect the same primary context.

Context mining service: Ideally, however, context should be discovered
autonomously in the system via data mining techniques. A current
prototype of the framework (Chong et al., 2005) involves user-
programmed rules, and so, context discovery is static and dependent
on designed scenarios. Although not implemented in the current
prototype, such a context mining service could mine for context from
sampled sensor packets forwarded to it by the context locator service.
The role of the context locator service would then be sampling sensor
data and discovering context via the context mining service.

Context trigger engine: In the framework, the context trigger engine
determines the sensor operations triggered, using a combination of
given context and sensor profiles. This engine comprises three
components: (1) context scheduler, (2) macro decoder, and (3) action
interpreter. The core of the trigger engine lies in the use of action
macros. Action macros are a command or a combination of actual
commands sent to sensors.

“piomawesy 3y} Jo suduodwiod urew ay) Suimoys wiesSelp [en)dUYRIY € Z NSl

150 m Context-Aware Pervasive Systems

dnoib

auibu3 Jabbu
Ibuz Ul 0SUS + §

Xa1o0n

uojesedo

Jejaidielu| uonoy

alojseleq

Japooa(dno.b 1osuss
oIoep + Uonoe pugg -)
/
la|npayos
obbBw pue
co,.ﬁeyoﬁw hm Lunied 9 1X8ju0)
g010BW uo
aloisejeq .
suogoy oS)
1X8)U0) S5
o A
T O
g2
a g
X+
aweu
1X8jU0d winjey € ELIINELS

101ed07 1X81uo)

9|ijold
pLjosues ____ losueg

— MMW pue ﬁr_@m

A/wwlwa:bmwwmqo aloiseieq
Pue P3G ~~-»|suonesado

suoloy

XoJuo <
X800 dnyo0| 1xaju0) ‘2
> T ! \
NN i M SpUBWIWOD ' \
AN - L6 J0SUSS puUas ‘0L | h
AN 108 G B,% — !
Y N (] %, &, © \ /
AN [}) N, /
(7N 13 . ® 1ONIBS \.sdnoib Josueg ,*
KNS 12 2 UONEOIUNWIWOY) | N 7
Yens. 38 sbuipeal TSmeeeeT
% Y losuas pueg” e|
UOIOB UB Y}IM }X8JUOD MBU Sa}elo0SSY 80IMIBS

Buiuiy 1xau0n

Context-Aware Sensor Networks ® 151

Context action datastore: As defined earlier, the relationship between
context and its respective actions is either a one-to-one mapping or
mappings with interdefined relations. In the prototype, these map-
pings are stored as strings. Sensor profiles and context names are
stored in a file. Alternatively, an XML database could be used for
storing the mappings information in a more precise format.

The following paragraphs describe each of the steps in Figure 7.3:

Steps 1la and 1b: Send sensor readings and parsed sensor data. At
regular intervals, sensor nodes collect samples of data about the
environment and send the packets to higher resource entities such
as PDAs or laptops. The raw hexadecimal data packets are then
parsed and interpreted by the system to construct equivalent decimal
readings in a format that can be parsed by the application later.

Steps 2 and 3: Context lookup and return context name. Sensor data
packets from each sensor group are then averaged when x number
of samples have been collected, where x is a user-defined value
based on the accuracy of readings within sensor groups. This yields
the primary context for sensor groups. At each iteration of discovered
primary context, the system updates the secondary context using
the new primary context. The secondary context information is then
passed on to the context trigger engine. If new context information
is discovered, then this information would be passed on to storage,
pending user response.

Step 4: Send context label and sensor group labels. The context trigger
engine serves to match the current context to a possible if-then rule
that can be used to trigger valid sensor operations. To match the
context to an appropriate rule, other contextual information about
the system can be used (e.g., the current time and the sensor groups
that gathered the information).

Step 5 and 6: Request action details and return action macros and trigger
information. Once a matching action macro has been found for some
context, the system puts this macro on the queue to be scheduled
for triggering. The queue operates based on a time-to-trigger param-
eter, which is a countdown timer to activate each individual action
macro. When the timer reaches zero, that macro will be activated.
This parameter is used to prioritize the macros activated to maximize
the amount of energy that can be saved (for example, sleep mode
may preempt less-active mode) and to accommodate time to establish
that the context is valid. The time-to-trigger is user defined and
decided based on the sensitivity of a context change.

152 m Context-Aware Pervasive Systems

Step 7: Send action and sensor group. Upon activation of a macro
action in the system, the macro decoder component will decompose
the macro into simpler instructions to be sent to the listening
application running at a base station.

Steps 8, 9, and 10: Send sensor operations and sensor group, send sensor
control message, and send sensor commands. At the application end,
decomposed action messages would be mapped to actual sensor
operations that sensors can understand. These sensor commands are
then sent by the application to individual groups of sensors.

7.3 IMPLEMENTATION AND APPLICATION SCENARIO

The previous section described the framework for a context-aware sensor
network. This section will highlight the inner workings of the implemen-
tation by Chong et al. (2005), using an application scenario that sets the
context for the implementation. To implement the sensor network, Ber-
keley mica2 motes have been deployed as the sensor nodes. Each mote
has the ability to process data, communicate with neighboring nodes
through onboard radio, and contain various sensors. In the prototype
application, however, only light and temperature sensors on the motes
are used.

As an application scenario, let us envisage a pig farm with strategically
deployed sensor nodes. Hence, all the sensor nodes have the ability to
produce measurements for temperature, light, and sound in the locations
where they are deployed. In this hypothetical scenario, these sensor nodes
are programmed to collect data in packets, communicate this data to their
nearest neighbor nodes, which would then upload the aggregated data
to the base station or other motes in close proximity to the base station.
Here, sensors that provide contextual information are sensors in the
pigsties and sensors outside, although only sensors in the pigsties are
being controlled. When the data arrives at the base station, it would be
collected and analyzed for specific patterns.

Study of this data would yield a pattern, which can be checked with
a context database to determine if it is a known context, and, if not, it is
added as additional context into the database. As an example, if the
sensors located in all pigsties detect no or minimum sound for long periods
of time, this would be a new recognized pattern, and the identifying
context could be “Pigs temporarily out of sties.” The context data store
would be automatically updated with context labels as new patterns are
being discovered in the data, and at the same time, it would prompt the
user for trigger actions for new contexts. Continuing from this example,
when the system knows “Pigs temporarily out of sties,” a context-triggered
action would be to reduce sensing in concerned areas until the pigs come

Context-Aware Sensor Networks ® 153

back (assuming that collected sensor readings will not be useful when
there are no pigs). Another context-triggered action could be to reduce
sensor message transmission.

In implementation, a separate data store could be utilized to provide
the context to trigger actions, where triggered actions are an abstracted
view of the low-level code running on the sensors. The scenario could
be described in four stages:

1. In our scenario, upon a database lookup, the context “Pigs tem-
porarily out of sties” maps to the action “reduce sensing.”

2. Next, the decoder in place decodes the action macro “reduce
sensing” into simpler action commands such as “reduce light sens-
ing” and “reduce sound sensing.”

3. In a one-to-one mapping, action labels map to sensor commands
and an interpreter derives commands (by utilizing the code data-
base and sensor profiles) to be sent to the communication server
on the base station.

4. The base station receives commands and sends them to intended
sensor addresses (i.e., to the sensors being controlled).

Upon receiving commands, sensors would adjust their behavior until
the next context is sensed. In this scenario, a context such as “Pigs in
sties” would reset sensors’ sensing behavior to the intended default.

7.3.1 Experimental Investigations

The effectiveness of the framework for saving energy in wireless sensor
networks has been evaluated via the prototype implementation of the
components, and experiments have been performed using this prototype.
All readings were recorded from actual runs of the application and graphs
from simulations using PowerTOSSIM.! All experiments simulate the pig
farm scenario described earlier, and, in all context-aware experiments,
packets are written whenever the base station sends out sensor commands
to individual motes. Specifically, the main objective of the experiments is
to obtain an estimate of the total energy saved using our framework in
terms of radio communication, data throughput, and voltage readings. In
these experiments, the sensor network configuration assumed is as shown
in Figure 7.4; a group of sensors play the role of providing context
information for controlling another group of sensors (playing the role of
controlled sensors). Details of the four experiments performed and their
summarized results are given as follows:

U http://www.eecs.harvard.edu/~shnayder/ptossim/.

154 m Context-Aware Pervasive Systems

InPigSty _--—7"~~ ~c Context-Aware System
4 . AN
/7 Sensors being >
/ .
/ Controlled \ Base station
l \I AData packers +
\ (5 1 Control messageVS
1
\\ ,
\ /
N /
\\\ ///
——]
Outside environment -~~~ ~~ S~
/, . e
/"Sensors providing*\ b ‘
/~ Context information Y, ata packers
| -

i

Figure 7.4 Experimental setup.

Experiment 1 — control experiment (as a benchmark for comparison):
In this control experiment, the setup involves placing all motes
under room temperature, where no context changes will take place
over a period of 20 min. Motes 4 and 1 collect light, temperature,
and battery voltage readings every 1000 ms and transmit every full
packet to the base station. This experiment demonstrates the sensor
network described in the aforementioned scenario in which the data
acquired by the sensor is directly stored at the base station. Here,
the system assumes a constant context state of Normal.

Experiment 2 — transmission rates experiment: Utilizing our context-
aware framework, one action that is implemented is varying the
transmission rates of packets in accordance with context changes,
where the transmission interval ¢ can take values of 1000 ms, 10000
ms, and 100000 ms for sensor nodes transmitting data packets per
t ms. In total, 12 packets have been written out to sensor motes to
change their transmission frequency, corresponding to changes
among the three context states over the time period; the context
states are (1) Pigs_Need_Out, (2) Normal, (3) Pigs_Need_In_Light.
In comparison to the control experiment, the results show a reduc-
tion in total messages sent from motes of 33% (202/608 x 100),
which equates to energy savings. The energy benefits are also
indicated in the changes in voltage measurements when contrasting
the two experiments.

Context-Aware Sensor Networks ® 155

Table 7.1 Table of Experimental Results

Experiments

Results Analysis Control Exp2 Exp3 Exp4
Runtime (in min) 20 20 7 20
Packets read 608 406 207 310
Packets written 0 12 11 10
Voltages (in mV) mote 1 start 2912 2912 2898 2892
mote 1 end 2892 2898 2892 2872
mote 4 start 2892 2892 2898 2687
Mote 4 end 2878 2885 2885 2653
Context states taken 0 3 2 2

Experiment 3 — message size experiment: As most energy is expended
in radio communication, energy consumption would most signifi-
cantly depend on the packets read and written. As such, the size
of packets communicated in the network is a factor that can
conserve energy. From a data management point of view, minimized
packet sizes could be a product of data aggregation or data filtering
activities in the network. This experiment aims to study the possible
energy savings from reduced message sizes when context changes
are experienced.

Table 7.1 shows the results from an experimental run of 7 min. Mes-
sage size changes are not observed using PowerTOSSIM and
hence not presented. During the experimental run, the context for
the first 2 min is DayTime, changing to NightTime in the next 3
min and back to DayTime until completion. During NightTime,
mote 1 transmits data with the exception of light readings. For a
total of 207 recorded readings, only 5675 bytes (41x21 + 166x29)
have been transmitted by the motes utilizing the framework,
whereas a control experiment for 7 min would require a transmis-
sion of 6003 bytes (207x29) under the same conditions. This has
shown that effective change of context states will reduce the load
of messages that need to be sent, where redundant packets could
be omitted, and will do so more significantly when the sensor net-
work has to operate for a longer period of time.

Experiment 4 — sleep mote experiment: Another aspect to examine
when using a context-aware framework is the possibility of putting
motes to sleep over long periods of time for optimum energy savings
when no activity is expected. In this experiment, the context-
triggered action extends to both the monitoring mote and the
controlled mote. The context action is triggered when the monitoring

156 m Context-Aware Pervasive Systems

mote (1) detects a context change from DayTime to NightTime and
vice versa. During NightTime, the motes will be put to sleep for an
extended period of time until DayTime is expected.

The readings obtained from the experiments have in effect demon-
strated that the architecture is feasible from the implementation perspective
involving a real sensor toolkit. However, we also note that an implemen-
tation of the framework needs to be sufficiently efficient in detecting
context changes and translating such changes into commands for control-
ling sensors, and the context changes should not occur too frequently —
the scenario is such that a context state remains unchanged long enough
to make it worthwhile changing sensor power states. This implies that if
context changes occur too frequently, then the framework might not be
able to respond to such changes in time.

7.4 SUMMARY

We have discussed the idea of sensors being aware of their own context
or circumstances or the context of other sensors and exploiting that
awareness for energy-saving behavior. We have illustrated these ideas by
presenting a framework and a prototype based on a scenario. Although
many existing approaches have looked at improvements in sensor hard-
ware with restricted applications, the approach here emphasizes a software
model for energy benefits in sensor networks.

There are many ways to exploit the concept of the context-aware
sensor. For instance, sensors (with the right capability) can move toward
sensed sources or toward energy sources (e.g., move from shaded areas
to areas under strong sunlight, or move toward sources of heat or toward
vibrations?).

ACKNOWLEDGMENT

This chapter contains portions reprinted, with permission, from Chong,
S.K., Krishnaswamy, S., and Loke, S.W., A context-aware approach to
conserving energy in wireless sensor networks, Proceedings of the First
International Workshop on Sensor Networks and Systems for Pervasive
Computing (PerSeNS 2005) held in conjunction with the Third Interna-
tional IEEE Conference on Pervasive Computing (PerCom 2005), Kauali,
HI, March 8-12, TEEE Press, pp. 401-405. This chapter also contains
portions from an unpublished draft paper authored with Suan Khai Chong,
used with permission.

2 Kinetic energy can be harvested for sensors — http://www.perpetuum.co.uk/.

Context-Aware Sensor Networks ® 157

REFERENCES

Akyldiz, LF., Su, W., Sankarasubramaniam, Y., and Cayirici, E., A survey on sensor
networks, IEEE Communications Magazine 40, 2002, pp. 102-114.

Cardell-Oliver, R., Smettem, K., Kranz, M., and Mayer, K., A reactive soil moisture
sensor network: design and field evaluation, International Journal of Distrib-
uted Sensor Networks 1(2), 149-162, April-June 2005.

Chong, S.K., Krishnaswamy, S., and Loke, S.W., A context-aware approach to conserv-
ing energy in wireless sensor networks, Proceedings of the 1st International
Workshop on Sensor Networks and Systems for Pervasive Computing (PerSeNS
2005) beld in conjunction with the Third International IEEE Conference on
Pervasive Computing (PerCom 2005), Kauai, HI, March 8-12, IEEE Press, pp.
401-405.

Clarkson, B.P., Life Patterns: Structure from Wearable Sensors, Ph.D. thesis, School of
Architecture and Planning, Massachusetts Institute of Technology, Cambridge,
MA, 2002.

Elnahrawy, E. and Nath, B., Context-aware sensors, Proceedings of the 1st European
Workshop on Wireless Sensor Networks, 2004, pp. 77-93.

Huaifeng, Q. and Xingshe, Z., Context-aware sensornet, Proceedings of the 3rd Inter-
national Workshop on Middleware for Pervasive and Ad-Hoc Computing,
Grenoble, France, 2005, ACM Press, pp. 1-7.

Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., and Anderson, J., Wireless sensor
networks for habitat monitoring, Proceedings of the ACM International Work-
shop on Wireless Sensor Networks and Applications, Atlanta, GA, 2002, pp.
88-97.

8

CONTEXT-AWARE SECURITY

Traditional security models help to ensure integrity, nonrepudiation, and
confidentiality of information. Security seems inherently contextual and
relative to the environment and circumstances; what is secure in one
situation is considered insecure in another; information is insecure if it is
viewed not by the right people, not at the right time, and not in the right
circumstances. With mobile and pervasive computing developments, infor-
mation can be accessed in more ways and in more places than ever before
and in forms not previously possible. Moreover, the context in which such
information is viewed or used can change given the agility and mobility
made possible by new devices and wireless networking technologies.
Also, as noted in Chapter 2, advancement in sensing technologies have
narrowed the gap between the physical and virtual world, so that the
computer can have a better picture of the physical world via advanced,
and increasingly widespread, sensor technology and sensor information
processing techniques. With computers having the ability to acquire con-
text information of people and things and recognize situations, the oppor-
tunity becomes available for computers to help manage secure information
with its own better knowledge of the physical world.

Context-aware computing can influence security models in at least
three ways:

B Finer-grained security: Fine-grained security models have been
developed based on the notion of context awareness. For example,
an appropriate security measure weaker than traditional security
models yet strong enough for the situation at hand can be applied.
Context might also be a means in which individuals are grouped
for the purposes of security decisions; only those people who
have passed through this room can view this information. Alter-
natively, context can be used to enhance existing security mea-

159

160 m Context-Aware Pervasive Systems

sures. A scene sometimes seen in movies is how retina scanning
or handprint scanning might be used as biometrics security for
entry through a door and how (quite gruesome it might be) an
eyeball or hand might be used from a dead person to unlock a
door. Combined with context sensitivity, such scenarios might be
made impossible; in addition to the biometrics, a camera might
be used to partially recognize the person in front of the door, or
weight sensors can be employed on the doormat in front of the
door, as additional context for access control. Alternatively, vital
signs from the body of a person might be needed in addition to
the biometrics data.

B Adaptable security levels: With awareness of the context of entities,
flexible security models can be achieved; enabling security levels
can be increased or decreased not just based on the identities of
people but the situation they are currently in. For example, to
access the same information, in some situations, a driver’s license
might be adequate, and, in others, the combination of the right
location, time, people nearby, and device identifiers might instead
be adequate. More generally, one set of contexts and credentials
might be thought to be just as adequate as another set of contexts
and credentials. Alternatively, to access the same information, the
security level can change depending on the circumstances. For
example, given some information to be protected, if this informa-
tion is accessed at a certain time and place or, more broadly, in
a certain situation, then the security level can be lower than if
the information was accessed at a different time and place or a
different situation. More generally, the security level might be
adjusted based on context. Another method to use context is to
present partial information; full disclosure might only be available
in certain situations, and, in other situations, only partial disclosure
is permitted.

B Increased traceability: It may be possible to allow access to secure
information even when a person does not have the full credentials
required at the time, provided the person is willing for the trans-
action to be comprehensively recorded. For instance, a person is
allowed to view certain information without a required password,
provided the person is willing to have his or her picture taken and
leave behind thumb prints, with the context of location and time
and witnesses of the event recorded. In general, context can help
to improve traceability and enrich auditing, and perhaps it can be
traded for changes in required credentials or security levels.

Mostéfaoui (2004) defines the term context-based security as follows:

Context-Aware Security ® 161

Context-based security supports the reconfiguration of the secu-
rity infrastructure according to the situation of use. This recon-
figuration is governed by the current context, formally called a
security context.

Security context refers to the information collected about the user’s
environment that is applicable to the security system at hand. Dulay (2004)
presents a comprehensive array of the types of context information that
would be useful in security applications. They include the following:

B Current state: the user’s current location, time, activity, people
nearby, physiological state, available services, network connectiv-
ity, etc. We have already discussed the use of such context infor-
mation, and they are indeed applicable to enhance security.

B User preferences and relationships: includes recommendations from
people. This type of context information is interesting as it involves
invoking personal and social information in making security deci-
sions. For example, in emergency situations, an authenticated family
member might be able to access the information regarding an
injured person or be permitted to access vital information.

B History: accumulated wisdom. Historical information might be of
use in relation to trust based on previous outcomes; for example,
in decisions about permitting access, although this is sometimes
difficult to capture.

The rest of this chapter explores state-of-the-art security models that
utilize context, showing the potential of the technology.

8.1 TRADITIONAL SECURITY ISSUES AND MODELS

We first briefly review background concepts in security. Further details
can be obtained from other sources such as Anderson (2001). Traditional
security models aim to provide confidentiality, integrity, and availability
of information. Confidentiality involves ensuring that information is only
shared or accessed by authorized parties under specific conditions; i.e.,
it relates to the privacy concerns of an asset. Authentication, which is the
process of ensuring that the identity declared is indeed the true identity,
is important in enabling access to the right parties. Integrity involves
ensuring that the information can be trusted and has not been tampered
with (e.g., during transmission, etc.) and also that, if the information has
indeed been modified, what to do under such circumstances (e.g., trace
the source of the modifications and take required action). Nonrepudiation
involves ensuring that senders of information, cannot deny having sent

162 m Context-Aware Pervasive Systems

the information, and receivers cannot deny having received the informa-
tion. Availability relates to the systems handling the information being
accessible by authorized parties in the required circumstances. Denial-of-
service, for example, is one form of attack on a system, which aims to
reduce, or cause the complete loss of, access to resources or services, or
render inaccessible the resource or service to legitimate parties by over-
loading the system providing the resources or services.

An important concept in security systems is the security policy, which
describes valuable (typically information-based) assets to be protected and
specifies security responsibilities. Such policies might be described infor-
mally or in a formal mathematical language.

8.2 CONTEXT-AWARE SECURITY SYSTEMS

We review several examples of systems and different ways to represent
security policies that take context into account.

8.2.1 Examples

We will start with an example of using context to enhance a traditional
security application. Logging into a computer system with username and
password is perhaps one of the most common authentication mechanisms
for using the computer. Bardram et al. (2003) present a more comprehen-
sive mechanism to enable what is called proximity login, i.e., login by
approaching the computer physically (with an authentication token),
which works as follows:

1. Uses a physical token (e.g., smart card) for gesturing and as the
cryptographic basis for authentication.

2. Uses a context-aware system to verify the location of the person
and logs the person out when he or she leaves (i.e., is found as
being not within the same location as) the computer.

3. Incorporates a fallback mechanism; if the positioning infrastructure
fails to determine the user’s location, then the user is requested to
enter his or her password to log in.

Location information is acquired via long-range RFID monitors reading
passive RFID tags, and by WLAN monitors that can tell the cell-based
location of networked devices. Given errors with the location technology,
a probability is assigned to the estimated location of the person, and only
if the probability is below a specified threshold is the person required to
provide a password. A user can log into a computer via the smart card
provided the system perceives with high probability that the user is indeed

Context-Aware Security ® 163

close enough to the device (e.g., in the same room); i.e., it is not enough
to steal the smart card to log into the computer without the user being
adequately close to the computer.

The aforementioned system demonstrates the use of context to provide
(1) additional security (in addition to the smart card), and (2) alternative
security (apart from using a password). Generally, in security frameworks
that support a larger variety of scenarios, a security policy coupled with
a context-awareness infrastructure would be useful, to specify security
behaviors in different settings.

An example of using context to provide flexible security for wireless
network environments is described by Hager (2004). Context is used to
choose the right security protocol or algorithms. Based on such context,
a decision engine computes the appropriate protocol or algorithm. Six
types of context are used:

B Security level: The security level is set by the user. A high security
level would cause a stronger security algorithm to be used for
encrypting data.

B Energy: The energy level of a device on which security algorithms
are to be employed is measured. First, a check is made to see if
the device is connected to the power supply; if not, the remaining
battery life of the device is measured. Low battery life leads to the
selection of a more energy-efficient security algorithm.

B Location: Location can determine the level of required security.
Possible locations used in the system are Home, Office, Lab,
and Unknown. Transmission between devices both at home
might not require such a high level of security. Wireless data
transmission from a device at home might not require such a
high security level as from a bank. Unknown locations might
be deemed insecure.

B Communications: Parameters concerning communication include
throughput, link capacity, quality of service, and signal strength.
Because data rates will also drop if the signal strength is weak,
then, with high bandwidth communications with strong signal
strength, stronger security algorithms that are less efficient in terms
of data exchanges might be employed.

B Object size: Larger files require more time to encrypt and decrypt,
and so more efficient encryption algorithms might be employed
for larger objects.

B User interactions: The more times two users have interacted with
each other and in more sessions, the lower is the security level
deemed required, so that algorithms involving rapid communica-
tion with reduced energy consumption is favored.

164 m Context-Aware Pervasive Systems

A value for each of the aforementioned parameters is normalized by
mapping to a context metric value. The combined set of context metric
values is then aggregated and weighted according to which context is
more important, and a security algorithm is chosen.

As a third example, from Shankar and Balfanz (2002), we consider
how context can be used to group entities to form secure associations
among the entities. Such a secure association then provides a basis for
secure ad hoc communication among the entities. A key concept is the
context view. A context view is part of an entity’s context that an appli-
cation is interested in. The idea is that software components called context
view providers observe devices and their contexts and generate context
views. A security software component processes a collection of context
views to find associations among these views. For example, it could find
that several devices are located in the same room, and, by virtue of similar
context, such devices are grouped together. Examples of applications
given include the following:

1. Instant secure e-mail: An e-mail sent to room123@mycorp.com will
reach all members currently located in conference room 123.

2. Secure file-sharing applications: Members in context-view associa-
tions can securely share files or documents.

3. Instant secure groupware: Groupware, including Web conferencing
tools, can be enabled within members of a secure group.

This approach provides associations or grouping by context, which might
change, and so, such ad hoc grouping provides secure context for short-
term or transient interactions.

Each of the aforementioned systems enhances and enables a specific
security application. More general frameworks have been proposed in
which users can define context-aware policies tailored to different sce-
narios and applications.

8.2.2 Context-Aware Policies

This subsection provides illustrations of context-aware policies and archi-
tectures of context-aware security systems.

A context-aware security policy incorporates contextual information of
entities or situations within the rules of the policy. Context can be
incorporated into policies in a number of ways, from augmenting condi-
tions for access to particular information to triggering change in the set
of applicable security policies.

Context-Aware Security ® 165

There are a number of different formalisms for expressing context-
aware security policies. We review several examples in the following text,
including contextual graphs, logic, and role-based XML languages.

8.2.2.1 Contextual Graphs

The contextual graph is similar to decision trees and provides a graphical
formalism for expressing security policies incorporating context informa-
tion (Brezillon and Mostefaoui, 2004). A contextual graph is a directed
acyclic graph with a unique input, a unique output, and an organization
of nodes connected by arcs, where each node can be an action, an
indication of the contextual information, or a recombinant node. A path
through the graph accumulates contextual information leading to a deci-
sion on security actions. Figure 8.1 gives an example of a contextual
graph. Such a graph shows the security policy for a healthcare records
distributed system.

The security action is indicated by the square boxes. The action
Authentication Method P is done for surgeons, followed by other security
actions (involving cryptographic protocols), depending on further context
(i.e., the location of the surgeon). For example, if the role is nurse and
the current location of the nurse is 1oc1, then Authentication Method Q
is used, followed by Cryptographic Protocol Y, as dictated by the particular
path through the graph. Such contextual graphs provide a visual repre-
sentation of rules and allows decisions and their security consequences
to be traced out easily. R1, R2, and R3 are recombinant nodes correspond-
ing to decision points (involving context) C1, C2, and C3.

C3.0 loct Cryptographic

Protocol X
location? R3

Authentication
Method P

Cryptographic

C1.0 surgeon Protocol Y R1

C3.1 loc2

location? C2.0 loc1

Cryptographic

Authentication Protocol Y

Method Q

R2

C2.1 loc2 Cryptographic
Protocol Z

Figure 8.1 Example of contextual graph.

166 m Context-Aware Pervasive Systems

8.2.2.2 logic

Logic can be used to represent security policies in a way that is human-
readable yet precise enough to be machine-processable, allowing reason-
ing to be carried out. For example, the Gaia environment has a service
called Cerberus, which integrates context awareness and reasoning with
security policies (Al-Muhtadi et al., 2003). Context information is repre-
sented using predicates such as the following:

Location (Bob, entering, room 2401)
Temperature (room 3231, “=", 98F)
Time (New York, “<”, 12:00 01/01/01)

Boolean operators can be used to form more complex expressions
such as Location(Tom, entering, room 3000) A SocialActivity(room 3000,
meeting), which refers to the context that Tom is entering room 3000 and
that there is a meeting going on in that room. In the style of first-order
logic, one could also use quantifiers over locations, people, and other
variables in predicates.

Different strengths of authentication are associated with different con-
fidence levels. Modeling of the different strengths of authentication is
useful given the flexibilities afforded by the use of context in security
policies. It is also useful in catering to different security technologies that
can be used. Facts such as the following represent confidence levels
associated with different technologies:

ConfidenceLevel (smart_badge, 30%)

ConfidenceLevel (smart_card, 80%)

Then, according to whether a principal P has been authenticated accord-
ing to technology, facts such as the following are added to the system:

Authenticated (P, password)
Authenticated (P, fingerprint)
Authenticated (P, retinascan)
Authenticated (P, mobilephoneSIM)

Confidence values can then be computed using a rule such as the
following:

Confidencevalue(P,V) : -
Jivice X (Authenticated (P, X)" ConfidenceLevel (X,V))

Context-Aware Security ® 167

« ”

The operator “: =" means “if.” Access control decisions are then rep-
resented using a rule such as the following:

CanAccess (P, dataProjector) :-

Jpumper V(Confidencevalue (P, V)" V>60%)

This rule states that the data projector (in a room) can only be accessed
if the confidence value of P’s authentication is above 60%. Note that one
could extend the rule to accommodate context information easily using a
rule such as this (which also requires that P be located in the seminar room):

CanAccess (P, dataProjector) :-
Joumper V (Confidencevalue (P, V)" v>60%)"

Location (P, seminarRoom) .

The inference engine can be used to answer queries such as whether
a principal named John can access the data projector:

?- CanAccess (john, dataProjector)

8.2.2.3 Roles

Role-based access control policies have been extended with context
information. For example, a graphical editor based on the Generalized
Policy Definition Language (GPDL) is presented in Covington et al. (2001)
for representing policies in XML format, which uses the role as the key
concept. Each policy contains a subject role (the subject on which the
policy is to apply), an object role (the object to which the policy applies),
an action (on the object), an environment role (the context of the action),
and the permissions (whether the action is to be permitted or not). For
example, the following policy specifies that a child is denied all actions
on dangerous appliances during working hours:

<GRBAC_TABLES>
<POLICY>
<SROLE> Child </SROLE>
<OROLE> Dangerous Appliance </OROLE>
<ACTION> ALL </ACTION>
<EROLE> Working Hours </EROLE>
<PERMS> Deny </PERMS>
</POLICY>
</GRBAC_TABLES>

168 m Context-Aware Pervasive Systems

The system that processes such policies determines what entities
occupy which roles in deciding access control actions. The environment
role represents the context of the action (the aforementioned example
considers only time but can be more elaborate). Context information is
obtained in the system via a context management system built using the
Context Toolkit.!

Also using the notion of roles are the context-aware policies in Tripathi
et al. (2004), given likewise in XML format. We provide the following
example as given in the paper but in a simpler format than XML:

ActivityTemplate RoomController (ObjectType Room room) {
Role LightManager ({
Reaction SwitchOnLight ({
Precondition # (room.presentUsers()) > 0
Action room.light.switchOn() }

Reaction SwitchOffLight {

Precondition # (room.presentUsers()) = 0

Action room.light.switchOff () }
Reaction Dim {

Precondition # (room.presentUsers()) > 0

& room.projector.on()
Action room.light.setLevel (LOW) }
1}

This policy specifies actions on the room lights according to the number
of people present in the room — turn the lights off if no one is present
and turn the lights on if at least one person is present. There is also a
rule specifying that the lights be dimmed if the projector is on and there
are people in the room. Other policies more closely related to security
can be defined, such as a policy that specifies that a room door be locked
automatically every day whenever no one is in the room and at specified
times. The LightManager’s role is to perform the action according to
conditions stated.

Recent work by Gomez et al. (2005) extends the XACML (eXtensible
access control markup language) for security polices in the context of a
flexible patient record access application. XACML supports the role-based
access control model. The extended XACML language allows the user to
specify context attributes that involve not only user location in terms of

1 More information on the Context Toolkit is available at http://www.cs.cmu.edu/~
anind/context.html.

Context-Aware Security ® 169

latitude, longitude, distance (from a given point), and what an object is
close to (i.e., a proximity condition), but also health-related contexts such
as the health status of the patient (based on data about heart rate, blood
pressure, and temperature) and whether there is an emergency. The system
uses GPS receivers for location and sensors to acquire patient data. Hence,
during emergency situations in which the physician is close to the patient
and the patient’s health is in danger, access to the patient’s otherwise
confidential medical records is permitted. A demonstrator for an E-health
scenario was developed.

The architectures of systems that process the aforementioned policies
have the common feature of a component to interpret and enact the
policies, and a second component to execute security actions, in consul-
tation with a third component, which acquires the context information of
entities. Indeed, these components can be decoupled in the sense of the
three subsystem architecture described in Chapter 2. This means that
different infrastructures can be “plugged in” to provide context awareness
for security purposes. For example, the Context Toolkit was used by
Covington et al. (2001) as noted earlier, and the Trust Context Spaces
system of Robinson and Beigl (2003) uses the Smart-Its sensors system to
provide context information for generating cryptographic keys.

There is a range of policy languages as already described, for explicitly
representing security measures that incorporate context.

8.3 FROM CONTEXT-AWARE SECURITY TO
CONTEXT-AWARE SAFETY

Security and safety consider different issues but have adequate similarity
so that the aforementioned work can be applied to safety applications as
well. According to the The American Heritage® Dictionary of the English
Language (fourth edition), the word security means “freedom from risk
or danger; safety,” and the word safety means “the condition of being
safe; freedom from danger, risk, or injury,” and also “a device designed
to prevent accidents, as a lock on a firearm preventing accidental firing.”
Hence, these two words are very closely related.

We can consider a smart-home scenario from Shetty and Loke (2005)
in which appliances in the kitchen can only be activated in the presence
of an adult. A young child’s position is sensed, and, if not collocated with
an adult in the kitchen, the child will not be able to operate the stove.
Again, if the temperature at the stove is getting higher or the smoke alarm
detects some amount of smoke, heat from the stove can be automatically
turned off. Hence, instead of mapping context to security levels or security
actions, it is possible to map context to safety levels and safety-related
actions. Other work such as that of Salim et al. (2005) attempts to sense

170 m Context-Aware Pervasive Systems

situations on the road and warn drivers of impending dangers. For
example, a driver can be warned that a high-speed car is approaching
the same junction and shows no sign of stopping. Also, drivers can be
alerted, or action taken, when the system detects via in-car sensors that
they are drowsy, drunk, or tired. When context-aware security is applied
to a home, then the line between safety and security blurs. The security
system of the house can be adapted according to context. For example,
security access to the doors and windows and other security mechanisms
may be enhanced when the residents are not in the house or when the
residents are asleep.

8.4 SUMMARY

We have reviewed new advantages that employing context awareness
brings to security, including more flexible and fine-grained security
models.

There are other related issues that we have not discussed in depth in
this chapter. One is the use of context not so much for securing information
as for securing context information, and related privacy issues. One would
not like one’s whereabouts to be continually tracked or publicly known
even if that provides new flexibility in security or new mobile services.
There have been recent works on protecting people’s location information
(Hengartner and Steenkiste, 2003) and on mechanisms to allow users to
have more control over how their context information will be used (such
as the work by Hong in his Ph.D. thesis as mentioned in Chapter 2).

Another issue relates to the use of context in security infrastructures.
The context information itself has to be trustworthy and secure — false
context can compromise security. Protecting the sensing and context gath-
ering subsystems will be important so that false information is not acquired.

Security in pervasive computing environments is an emerging area of
interest, which raises issues not typical in traditional distributed computing,
such as vulnerabilities with wireless networking, introduction of new
unknown devices to an environment, denial-of-service for openly available
devices (e.g., sleep deprivation of limited battery power devices), and
integrity violations of critical wireless sensor data through intercepts (Sta-
jano, 2002; Nixon et al., 2004).

REFERENCES

Al-Muhtadi, J., Ranganathan, A., Campbell, R., and Mickunas, M.D., Cerberus: a context-
aware security scheme for smart spaces, Proceedings of the 1st IEEE Annual
Conference on Pervasive Computing and Communications (PerCom 2003), Fort
Worth, TX, 2003, pp. 489-496, available at http://www.cyberdudez.com/cer-
berus.pdf.

Context-Aware Security ® 171

Andersson, R., Security Engineering: A Guide to Building Dependable Distributed
Systems, John Wiley & Sons, New York, 2001.

Bardram, J.E., Kjaer, R.E., and Pedersen, M.O., Context-aware user authentication —
supporting proximity-based login in pervasive computing, in Dey, A., McCarthy,
J., and Schmidt, A., Eds., Proceedings of Ubicomp 2003: Ubiquitous Computing,
Vol. 2864 of Lecture Notes in Computer Science, Seattle, WA, October 2003,
Springer-Verlag pp. 107-123, available at http://www.daimi.au.dk/~bardram/
docs/bardram.ubicomp2003.pdf.

Brezillon, P. and Mostefaoui, G.K., Context-based security policies: a new modeling
approach, Proceedings of the 2nd IEEE Annual Conference on Pervasive Com-
puting and Communications Workshops (PERCOMW’04), 2004, IEEE Computer
Society Press.

Covington, M.J., Long, W., Srinivasan, S., Dey, A.K., Ahamad, M., and Abowd, G.D.,
Securing context-aware applications using environment roles, Proceedings of
SACMAT01, 2001, ACM Press.

Dulay, N., Adaptive Context Aware Security, presentation at UK-UbiNET, May 2004,
available at http://www-dse.doc.ic.ac.uk/Projects/UbiNet/ws2004/Slides/
Dulay.pdf.

Gomez, L., Moraru, L., Simplot-Ryl, D., and Wrona, K., Using sensor and location
information for context-aware access control, Proceedings of EUROCON 2005,
Belgrade, November 2005, available at http://www lifl.fr/RD2P/uploads/
Papers/gomez-eurocon-05.pdf.

Hager, C.T., Context Aware and Adaptive Security for Wireless Networks, Ph.D. thesis,
Faculty of the Virginia Polytechnic Institute and State University, 2004.
Hengartner, U. and Steenkiste, P., Protecting people location information, Proceedings
of the 1st International Conference on Security in Pervasive Computing, March

2003, pp. 25-38.

Mostéfaoui, G.K., Towards a Conceptual and Software Framework for Integrating
Context-Based Security in Pervasive Environments, Ph.D. thesis, Universite
Pierre et Marie Curie, Paris VI, 2004.

Nixon, P., Wagealla, W., English, C., and Terzis, S., Security, Privacy and Trust Issues
in Smart Environments, Computer and Information Sciences, Smartlab Technical
Report (Smartlab-2004-01), 2004, available at http://smart-
lab.cis.strath.ac.uk/Publications/techreports/SPTPaperFinal.pdf.

Robinson, P. and Beigl, M., Trust context spaces: an infrastructure for pervasive security
in context-aware environments, Proceedings of the 1st International Conference
on Security in Pervasive Computing, Germany, 2003, Springer-Verlag, Lecture
Notes in Computer Science 2802, 2004.

Salim, FD., Krishnaswamy, S., Loke, S.W., and Rakotonirainy, A., Context-aware
ubiquitous data mining based agent model for intersection safety, Proceedings
of the Embedded and Ubiquitous Computing Workshops, 2005, pp. 61-70.

Shankar, N. and Balfanz, D., Enabling secure ad-hoc communication using context-
aware security services, Proceedings of the Workshop on Security in Ubiquitous
Computing, at the Conference on Ubiquitous Computing, 2002.

Shetty, P. and Loke, S.W., Context-based security (and safety) meta-policies for per-
vasive computing environments: the case of smart homes, Proceedings of the
CONTEXT-05 Workshop on Safety and Context, de Lavalette, B.C. and Tijus, C,,
Eds., Paris, 2005.

Stajano, E., Security for Ubiquitous Computing, John Wiley & Sons, U.S.A., 2002.

172 m Context-Aware Pervasive Systems

Tripathi, A., Ahmed, T., Kulkarni, D., Kumar, R., and Kashiramka, K., Context-based
secure resource access in pervasive computing environments, Proceedings of
the International Workshop on Pervasive Computing and Communications
Security (IEEE PerSec’04), 2004, IEEE Computer Society Press.

9

CONTEXT AWARENESS AND
MIRROR-WORLD MODELS

This chapter discusses an idea for implementing awareness. The idea is
that a virtual model of the real world is constructed and some amount of
synchronization between the virtual model and the real world is managed
via sensors and context awareness. The form of the virtual model, the
details captured, how up-to-date the model is, and the degree of corre-
spondence to the real world will depend on the specific application. We
consider several such models in the following text.

We first consider the idea of mirror worlds introduced by Gelernter
(1993), and then discuss a project called Nexus, which aims to construct
and employ virtual models that reflect aspects of the real world aug-
mented with additional virtual objects. We then note the parallel between
these mirror virtual models and 3-D virtual worlds used for multi-user
dimension (MUD!) games. We also discuss an example of how ideas
developed for virtual environments can be employed in the physical
world once we observe that the virtual environment can mirror the
physical world or, perhaps, an abstraction of it. We then review the notion
of smart spaces or smart environments and briefly discuss ontologies for
building mirror worlds.

9.1 GELERNTER’S MIRROR WORLDS

A mirror world is effectively a virtual model or counterpart of some part
of the physical world, such as a city mirror world or a hospital mirror
world, which contains detailed descriptions of a city (e.g., maps, etc.) or

U http://en.wikipedia.org/wiki/MUD.

173

174 m Context-Aware Pervasive Systems

a hospital, respectively. One can browse deeply within mirror worlds to
different levels of detail; such mirror worlds aim to reflect the physical
reality in real-time. To quote from Gelernter (1993):

... you flip channels until you find the Mirror World of your
choice, and then you see a picture. Capturing the structure and
present status of an entire company, university, hospital, city,
or whatever in a single (obviously elliptical, high level) sketch
is a hard but solvable research problem. The picture changes
subtly as you watch, mirroring changes in the world outside.

One can also interact with software agents in mirror worlds or with
other visitors (perhaps real people in the physical world), or insert new
agents; according to Gelernter (1993):

You meet your software agents and other Mirror World visitors
along the way ... you choose to ask questions or plant new
agents ...

To accurately reflect the physical world, a mirror world is fed with
information from data-gathering or monitoring equipment, perhaps some
combination of sensors, and sensor data filtering and processing:

A Mirror World is an ocean of information, fed by many data
streams. Some streams represent hand-entry of data ... Others
are fed by automatic data-gathering and monitoring equipment,
like ... weather-monitoring equipment, or traffic-volume sensors
installed in roadways.

Many such mirror worlds might be constructed by different people
and integrated into a whole, and accessed by many people via different
computers simultaneously.

It is interesting that mirror worlds were envisioned by Gelernter before
the World Wide Web was invented or became as large as it is today. In
some sense, the Web reflects, albeit weakly, the physical world — from
personal home pages as counterparts of individuals to university Web
pages corresponding to universities (and, similarly, faculty home pages
corresponding to faculties and department home pages corresponding to
departments), and from businesses, often with their own home pages, to
places with theirs. However, keeping these Web pages up to date, often
done manually, is tedious work. It is also interesting that mirror worlds
were envisioned by Gelernter before sensor networks gained the popu-
larity and enjoyed the developments seen today. The idea of feeding data

Context Awareness and Mirror-World Models ® 175

streams into a computational structure so that the data coming in is
reflected in changes to some high-level model is used to help interpret
the data and make it more comprehensible, in the same way that a context-
aware system would aggregate or process sensory data into high-level
context meaningful to an application.

Holzhauer (2005) proposes an integration of modeling and simulation
with wireless sensor networks similar to the idea of mirror worlds though
not browsable or visual. It helps to reduce data transmission, which costs
energy, and therefore saves battery power on the sensors. The idea is
that the simulation provides forecast of data values, and only deviations
from the forecasted values are transmitted; where there is no transmission,
it is assumed that the forecasted value is correct. This can reduce the
frequency of transmitting sensor data. The model in this case is a math-
ematical model for predicting sensor data values.

9.2 NEXUS

What can be viewed as a serious attempt at constructing mirror worlds
is the Nexus? project. The project clearly distinguishes three layers of
abstraction: the physical world, the augmented-world model, and infor-
mation spaces. The augmented world refers to a model that mirrors aspects
of the physical world and yet contains virtual objects that “augment” the
physical world. The Nexus framework provides the Augmented World
Modeling Language (AWML) and the Augmented World Query Language
(AWQL) (Nicklas and Mitschang, 2004; Lehmann et al., 2004), which can
be used to describe objects and relations between objects in an augmented-
world model, including objects that correspond to real-world objects and
have position and extent, virtual informational objects such as objects
situated on Web servers, and objects containing navigational information.
Real sensors are modeled as special spatial objects. Virtual sensors that
combine several real sensors and provide synthesized or processed infor-
mation can also be defined. Associations can be specified between aug-
mented-world objects and real-world objects (e.g., associating Web pages
with particular real-world objects such as exhibits of a museum). Relations
supported in the Nexus model include “part of,” “sticks on,” “belongs to,”
and “held by.” Applications using Nexus include a Museum Guide, Nav-
igation Tool, and Virtual Scavenger Hunt.

Based on such augmented-world models, event-based applications can
be built, where events can be expressed in a high-level model at an
abstraction level that corresponds to real-world everyday language descrip-
tions (e.g., the user entering a particular area, passing particular objects,

2 http://www.nexus.uni-stuttgart.de/en/overview/vision/index.html.

176 m Context-Aware Pervasive Systems

or near another person) (Bauer and Rothermel, 2004). In the case of
uncertainties inherent in sensors, threshold probabilities can be employed;
when the probability of the event is above a certain value, the event is
deemed to really occur.

One cannot help but note the overlap with the smart virtual counter-
parts project mentioned in Chapter 4, in which real-world objects can be
associated with its virtual counterparts via RFID tagging. However, aug-
mented-world models allow more comprehensive spatial modeling. The
notion of augmented reality,> which superimposes information directly
over the physical environment viewed via a headset and a wearable
computer, is also interesting and bears some resemblance to physical
worlds augmented with virtual objects, of which an augmented-world
model provides an explicit representation. In augmented-reality work, one
can look at a real-world object via special head-mounted glasses and have
information about the object displayed on the glasses superimposed over
the real-world object. Such superimposition is similar to how virtual
information objects (e.g., virtual stick E-notes) might be superimposed on
maps of real-world places.

9.3 VIRTUAL WORLDS, VIRTUAL ENVIRONMENTS

Virtual worlds have been employed in many computer games, social
interaction, and entertainment applications. MUDs comprise 3-D worlds in
which persons or their representatives called avatars might dwell and meet
other avatars.* A MOO is a textual view of such virtual worlds but with
text that paints a picture of people, things, and places, such as the following:

You are standing on the sandy banks of a small river. A small
wooden bridge spans the river, leading to the jungle on the
other side. You see a shiny spot in the midst of the green right
in front of you

Such virtual worlds typically have no correspondence to real-world
places but are constructed with spatial relationships and objects so as to
provide adequate engaging realism.

One can note the similarities between such virtual worlds and mirror
worlds, except that mirror worlds do attempt to correspond to some real-
world place, even if augmenting it with virtual objects, whereas virtual
worlds for games and entertainment applications generally do not. This

3 http://www.augmented-reality.org/.
4 An atlas of virtual worlds can be found at http://www.cybergeography.org/atlas/
muds_vw.html.

Context Awareness and Mirror-World Models ® 177

similarity can be exploited to create sophisticated virtual worlds that mirror
physical worlds in the spirit of the Nexus’ augmented-world models. For
example, real world movements of people through physical spaces can
be mirrored in the virtual world by the movement of their corresponding
avatars in virtual spaces — imagine a virtual world mirroring a stadium
where a soccer match is going on. Events that happen in the physical
world are mirrored via changes in the virtual world. Beyond merely
reflecting the real world, the converse might be possible in some cases.
Actions in the virtual world (e.g., on objects in the virtual world) might
cause actions in the physical world (e.g., invoking commands on a
television representative in a virtual world causes the actual television in
the physical world to be turned on), or moving a robot in the virtual
world causes corresponding movements of a physical robot in the real
world. Issuing commands or queries to objects in the virtual world results
in commands or queries being actually issued to objects in the physical
world. In fact, this relates to the virtual reality concept, whereby a user
has the experience of being embedded in an environment that is simulated
in a computer. A variety of sensory inputs increase the sense of realism
(e.g., via haptic feedback) and allow interaction with objects in the virtual
environment. With mirror worlds, interacting with the virtual world is
interacting with the physical world being mirrored.

Indeed, virtual-world counterparts of physical worlds allow augmen-
tations to the physical world in new and interesting ways. Inherent in
Nexus’ AWML is the notion of augmenting physical worlds with informa-
tional and computational objects. In the following text, we consider
another example of enriching the physical world via computational notions
first introduced in virtual environments.

9.3.1 Aura, Focus, and Nimbus: Virtual Objects and
Real-World Objects

We consider an example of a model for mutual awareness of devices or
physical artifacts inspired by the spatial model of mutual awareness used
in MASSIVE (Greenhalgh and Benford, 1995) for virtual environments, in
which entities in a virtual environment are made aware (or unaware, as
is the case) of one another via a model involving concepts such as nimbus,
focus, and aura surrounding entities. Benford et al. (1993) stated that
communication between objects within the virtual environments is a
necessity, and a way to achieve this is by allowing each virtual object to
have its own aura. As stated by Ferscha et al. (2004), aura is a subtle
sensory stimulus of “attraction” that transmits “signals of attraction” gov-
erned by the “laws of attraction.” Benford et al. (1994) defined aura as a
“subspace which effectively bounds the presence of an object within a

178 m Context-Aware Pervasive Systems

Nimbus of B

A aware of B .

B aware of A

Figure 9.1 Nimbuses of two devices. (From Benford, S. et al., Managing mutual
awareness in collaborative virtual environments, Proceedings of VRST 94, Sin-
gapore, 1994, ACM Press, pp. 223-236.)

given medium which acts as an enabler of potential interaction.” It means
that each virtual object has a territory of virtual space that surrounds the
object. Information exchange or establishment of connection between the
two objects occurs when these territories cross over and thus interaction
between these objects is made possible within the virtual space. Aura is
just an elementary mechanism or stimulus for interactive behaviors for
these objects. The size or shape of these auras varies independently as
each object has its own criteria to meet. The mechanism for interaction
of objects is made possible with auras, the objects themselves now being
responsible for controlling these interactions. This process of controlling
the interaction is achievable by having degrees in the level of awareness
between these objects. It is with this measurement of focus and nimbus
that an object’s interaction is redirected toward another object and one
can adjust the extent to which an object is aware of another (Benford et
al., 1994; Rodden, 1996). The definition taken from Benford et al. (1994)
states that:

B The more an object is within your focus, the more aware you are
of it.

B The more an object is within your nimbus, the more aware it is
of you.

In short, Rodden (1996) stated that focus is a function that allows an
object to be mapped into a position within a space, whereas nimbus is
a function that maps objects into the shared space and returns the position.
By knowing the degree of focus and nimbus between objects, the level
of awareness among them can be determined.

Context Awareness and Mirror-World Models ® 179

We can bring such concepts over to devices and everyday artifacts so
that we can speak of the nimbus, focus, and aura of physical artifacts. We
can conceive of physical artifacts having an aura surrounding them, each
having its own nimbus and focus. A general model of mutual awareness
can be adapted for different context environments, providing individual
devices some control over their awareness toward other devices and the
device’s information (while preserving privacy). We can implement the
concepts from the spatial model of awareness in a number of ways. For
example, the aura of each device is assumed to be the area within the
range of communication. Thus, given the focus and nimbus of each device,
the level of awareness can be used to control and behave differently under
different programmable conditions. For example, consider a device with
Bluetooth networking capability. Given the Bluetooth range of 10 m, one
can roughly define the aura (or the focus and nimbus) of a device as a
sphere of 10 m radius. Alternatively, if another technology is used, say,
RFID tags with several meters of range, one can implement the focus and
nimbus of tagged objects in terms of these RFID parameters. Each device
or artifact can adjust its own focus size (i.e., its level of awareness of
others) and its own nimbus size (i.e., its level of concealment from others).

Given a collection of such devices, each with its own level of awareness
and concealment, interesting behaviors can emerge, with certain devices
able to interact with others provided the focus and nimbus permit it. A
simple formalization of these notions can take the form of rules of
awareness and concealment represented using formulas, depicting situa-
tions in which devices are aware of each other.

Let a be the level of awareness. Let ¢ be the level of concealment. The
minimum value of @ and ¢ is 1. The maximum value of @ and ¢ must be
equal (as prescribed by the application designer, n). We define the following:

B Definition A: For device x to be aware of device y, device X’s a
value must be higher then or equal to device y’s ¢ value, i.e., a(x)
> c(p).
When this condition is true, device x is able to detect device vy.

B Definition B: For device x not to be aware of device vy, it is the
inverse of the condition, where, c(x) > a(y).

Based on these definitions, we can derive propositions that represent
various mutual awareness situations. We give five examples, i.e., propo-
sition 1 to proposition 5.

Proposition 1 (Mutual Awareness)

Let x, y € Devices; device x and device y are aware each other if and only
if a(x) 2 c(y) and a(y) = c(x).

180 m Context-Aware Pervasive Systems

Proof: By definition A of awareness.

When more devices are added, then, all devices are aware of each
other if and only if

Vv d,,d, € D, a(d) = c(d,) where D is the set of all devices.

Proposition 2 (Mutually Unaware)

Let x, y € Devices; device x and device y are not aware of each other if
and only if c(x) > a(y) and c(y) > a(x).
Proof: By definition B of awareness.

Proposition 3 (Asymmetric Awareness)

Let x, y € Devices; device x is aware of device y, and device y is not aware
of device x. Then, a(x) = c(y) and c(x) > a(y)

Proof: From Definition A, device x is aware of device y if and only
if ax) = c(y).

From Definition B, device y is not aware of device x if and only if
cx) > a(y).

Proposition 4 (Condition 1 for Transitive Awareness)

Let x, y, z € Devices; device x is aware of device y, and device y is aware
of device z, then device x is aware of device z whenever c()) = c(z).

Proof: Suppose device x is aware of device y, and device y is aware
of device z. Then, from Definition A, a(x) = c(y) and a(y) = c(z). But if
c(y) 2 c(2), then ax) = c(y) 2 c(2); i.e., a(x) = c(z). Hence, device x is
aware of device z.

When more devices are added, suppose x; is aware of x,, X, is aware
of x5, X5 is aware of x,, x4 is aware of xs, ..., X, is aware of x,.

Then, x, is aware of x, whenever c(x) 2 c(x,) for all j e {2, ..., n - 1}.

Proposition 5 (Condition 2 for Transitive Awareness)

Let x, y, z € Devices; device x is aware of device y, and device y is aware
of device z, then device x is aware of device z whenever c(y) = a(y).

Proof: Suppose device x is aware of device y, and device y is aware
of device z. Then, from Definition A, a(x) = c(y) and a(y) = c(z). But if
c(y) 2 a(y), then a(x) 2 c(y) 2 a(y) = c(2); i.e., a(x) = c(2). Hence, device
x is aware of device z.

When more devices are added, suppose x; is aware of x,, X, is aware
of x5, X5 is aware of x,, x; is aware of x5, ..., X, is aware of x,.

Then x, is aware of x, whenever C(Xi) > a(xj) forallje {2, ..., n— 1}

The implication of these statements is that as long as each device
maintains c(x) 2 c(x,) or c(x) 2> a(xy), the awareness relationship will be
transitive, regardless of the number of devices. Maintaining such a con-

Context Awareness and Mirror-World Models ® 181

dition might be a “social rule” imposed on each device to have a transitively
aware society of devices. Hence, the model allows different situations of
mutual (non-)awareness to be represented. Adjustments to the level of
mutual (non-)awareness can be done by adjusting the levels of awareness
and concealment for each device or artifact (perhaps as dictated by the
choice of the device or societal rules). So, a device can hide itself by
setting its concealment level high or reduce the scope of what it can, or
wants to, see or be aware of by decreasing its level of awareness.

Note that all the aforementioned computations about interartifact
awareness happen within the virtual world (perhaps located in an “aware-
ness” server that determines who or what should be aware of whom or
what, based on the individual object’s concealment and awareness levels).
The results of such computations can be communicated to the objects so
that behaviors can be physically manifested, thereby leading to interesting
applications. For example, two teddy bears, if placed on the same sofa,
might become mutually aware of each other and manifest this via fun
exclamations and greetings, each teddy bear with embedded computers
and the sofa acting as the awareness server, wirelessly networked to the
computers in the teddy bears. Alternatively, the teddy bear may greet its
owner in close proximity, i.e., on coming within its focus.

We have already seen in Chapter 4 that the idea of virtual counterparts
of physical artifacts can be used to associate computational behaviors and
informational objects with physical artifacts. The mirror world concept
associates computational behaviors and informational objects with corre-
sponding physical environments (parts of the physical world). The pre-
ceding model for mutual awareness shows how a simple model of focus
and nimbus of objects within a computer (and computations governed
by the rules already mentioned) can endow physical artifacts or devices
with effective auras (and effective focus and nimbus), effective in the
sense of such auras being useful for triggering interesting behaviors.

9.4 DIGITAL CITIES

The work on digital cities utilizes the metaphor of a city for a virtual
world. A digital city is a 3-D reconstruction of a city, sometimes mirroring
an actual city and sometimes an artificial city, similar to virtual worlds in
games. We consider two examples of digital city projects.

Digital City Kyoto (Ishida, 2002) aims to mirror Kyoto, a city in Japan,
itself. The digital mirror world of the city contains 2-D maps of the city
as well as 3-D graphical models, constructed using 3DML’. Further, 2-D
maps of the city contain hyperlinks to Web pages containing information

> http://www flatland.com.

182 m Context-Aware Pervasive Systems

about various objects and buildings in the city. An interesting feature of
Digital City Kyoto is that it aims to be live in the spirit of Gelernter’s
mirror worlds. Real-time sensors are deployed to gather information about
features in Kyoto. For example, 300 sensors have been installed in Kyoto
City to collect data about more than 600 city buses; each bus reports its
location and routes every few minutes. Such real-time information can
be useful to bus users and are accessed via mobile devices. Other real-
time information noted are weather conditions and live video from the
fire department. A virtual bus tour application through the digital city
has also been built. Avatars can also populate the digital city. Digital City
Kyoto was carried out within the scope of the Universal Design of Digital
City project.®

A Canadian digital cities project’ has plans to install environment
sensors that read temperature, humidity, light levels, and proximity at
short distances within the city of Montreal. Such sensor data is then
relayed to Wi-Fi hot spots and then stored in databases. There are a large
number of hot spots in Montreal® providing an effective networking
backbone infrastructure to which such sensors can connect. With a digital
model of Montreal, and knowing the position of the sensors, one can
determine the context of the many streams of sensor data and interpret
the data appropriately.

The aforementioned work has similarity with aspects of Gelernter’s
mirror world models. Such digital cities, however, are not easy to maintain
(e.g., if new buildings arise or old buildings are pulled down, the 3-D
models need to be updated). Also, there is scope for much greater depth
to be added to such digital cities; one can imagine taking a virtual bus
tour through the city and not able to enter the buildings displayed, but
one could also have detailed models of the interiors of whole buildings,
which users can then browse and explore. And, many more sensors can
be added to the physical city to update the digital models at runtime.
However, not all features of a digital model can be updated at runtime
via sensory information. The problem of maintaining such complex
models would then increase, unless it is a multiparty effort mirroring the
way a large open distributed information system such as the Web grows.
Creating large digital cities would require the effort and time of many
and would be distributed over a large number of servers, analogous to
the Web.

Such digital cities emphasize a visual 3-D model (akin to virtual worlds
or virtual environments that also tend to emphasize the user experience

¢ http://www.digitalcity.jst.go.jp/home-e.html.
7 http://www.digitalcitiesproject.net/.
8 See http://www.ilesansfil.org/ for a list of such hot spots.

Context Awareness and Mirror-World Models ® 183

of 3-D models), whereas Nexus via AWML and AWQL emphasize models
of the world amenable to querying. However, Nexus applications can be
endowed with 2-D maps or 3-D visualizations.

9.5 AWARE SPACES: SMART ENVIRONMENTS AND
SMART SPACES

A goal of smart environments as mentioned in Chapter 1 is to endow an
environment with sensing and computational capabilities. A space or
environment (e.g., a meeting room, an office, a house, a hospital or part
thereof, a classroom, a laboratory, etc.) is “smart” in the sense that it can
be aware of its current occupants or contents and their actions and
behavior, and then such awareness is used to support one or more
applications. Sensors are typically embedded into the space so that they
do not obstruct the user and the user behaves in a natural manner. At
the CSIRO,’ a smart space is defined as follows:

A smart space is an environment with numerous elements that
sense, think, act, communicate, and interact with people in a
way that is robust, self-managing, and scaleable.

The CSIRO Smartlands project!® aims to use sensors to track livestock,
detect unusual animal behavior, perform herding, and monitor animal health.

The National Institute of Standards and Technology in the United States
describes a smart meeting room project!! in which “pervasive devices,
sensors, and networks provide infrastructure for context-aware smart
meeting rooms that sense ongoing human activities and respond to them.”
Employing 280 microphones and 7 video cameras, the project aims to
capture large amounts of data about meetings. Such data can be processed
for speech recognition, speaker identification, gesture recognition, and
face identification, which can then be used to support applications such
as commanding devices and appliances mentioned in Chapter 6. For
example, a command such as “computer, bring up my appointment
calendar” can be interpreted (the speaker identified and the relevant
application and calendar displayed). Objects being pointed to can also
be identified to support such commands. The collected data can be
annotated (perhaps semiautomatically, e.g., via speaker recognition) and
used for archival purposes.

? http://www.smartspaces.csiro.au/about.htm.
10 http://www.smartspaces.csiro.au/applic/smart-lands.htm.
1 http://www.nist.gov/smartspace/.

184 m Context-Aware Pervasive Systems

In the BiD Smart Space,'? an array of microphones in the ceiling is
used for speaker localization and identification. It is noted that a “smart
space is not a single application; it is a platform on which a vast number
of applications can be built and tested. The canonical example is automatic
adjustment of room conditions, such as for lighting, temperature, or stereo
volume, based on detection of user identity and ... preferences.”

Classroom 2000 (Abowd, 1999) is one of the earliest projects in which
automated multimedia (i.e., audio and video, and contents of electronic
whiteboards) capture of lectures is carried out using microphones and
video cameras embedded in the ceiling. The captured lectures were then
made accessible using an online information system.

In the spirit of Classroom 2000, Labscape (Arnstein et al., 2002) is a
system to help “capture formal, detailed representations of laboratory
procedures as the work is performed.” Touch tablet computers are used
by laboratory workers containing information about laboratory procedures
and plans. The workers can use the system to record progress and access
needed information during their laboratory work. In an implementation,
to adequately cover the work areas laboratory workers most often use,
five tablet computers were used, distributed throughout the laboratory.

Also interesting is the magic mirror metaphor used in the ALIVE
project.’* A person looks into a screen and sees himself or herself. One
camera and vision-based tracking is used to determine the position of the
person’s head, hand, and foot. The screen mirrors the person’s gestures,
and additional animated characters can join the person on the screen; the
person can interact with these characters. Such a combination of audio
and visual input is used for natural human computer interaction in what
is called perceptive spaces by Wren et al. (1999).

Toward a vision of smart spaces, with the smart house as an example,
El-Zabadani et al. (2005) presented a system of smart plugs in which RFID
tags (on devices) and readers (at the power outlets) are used to detect
when an appliance has been plugged into a power outlet. A map of the
power outlets will also reveal roughly the location of the devices. The
idea is that new devices added to the room can be detected automatically.

The “intelligent job site” vision proposed by Julien et al. (2005) employs
distributed sensors and mobile devices for workers and has interesting
features, including:

B A worker can carry a mobile device that interacts with distributed
sensors (e.g., read the RFID tag with information about materials,
such as a palette of bricks, and record their location).

12 http://www.eecs.berkeley.edu/~davidsun/smartspace/.
3 http://alive. www.media.mit.edu/projects/alive/.

Context Awareness and Mirror-World Models ® 185

B Sensors can monitor the site for the amount of hazardous materials
and warn workers if the level goes beyond a specified threshold.

B Stress sensors in walls or floors can be used for structural health
monitoring.

B A crane has a load sensor to check if it has exceeded its carrying
capacity.

A networked distributed software infrastructure with components on
the crane computer, hazardous material sensors, workers’ mobile devices,
and other sensors is described in the reference cited.

These aware spaces can provide context information useful for their
occupants or context-aware artifacts located within them. Sensing (includ-
ing manual explicit input by individuals) in an aware space can be viewed
as bridging the physical world, which is the space, and the virtual
(computational) world, when the sensor information is used to update a
computational model mirroring the space or some aspect of it. Such models
can then be used to support multiple context-aware applications.

9.6 MIRROR WORLDS: CONTEXT AND ONTOLOGIES

We have previously discussed the use of context models and ontologies
in Chapter 2. Ontologies provide the vocabulary of concepts for describing
context in context-aware applications. Ontologies can also be used to
integrate different context models based on the same ontology. Where
different context models are constructed according to different ontologies,
mappings between ontologies (Kalfoglou and Schorlemmer, 2003) can be
used as a basis to integrate these context models.

To construct mirror worlds in a machine-processable form (amenable
to querying, for example) requires a well-defined vocabulary of concepts
and relationships among the concepts. In this sense, ontologies are impor-
tant. An ontology is “a specification of a conceptualization” (Gruber, 1993)
of some aspect of the world. As an area of philosophy, ontology has one
key question: What are the fundamental categories of being? From this
question, one can note immediately the relevance of such an ontology to
building mirror worlds. In building a mirror world, a key question is:
What needs to go into the mirror world model? A guiding vocabulary of
objects provides a good starting point.

Nexus’ AWML provides an example of concepts that can be used to
model the world, adequate for many applications, which one could view
as an ontology. The SOUPA ontology provides concepts for describing
context in context-aware applications, including space, action, time,

1 http://pervasive.semanticweb.org/soupa-2004-06.html.

186 m Context-Aware Pervasive Systems

region, location, policy, BDI, agent, schedule, person, and device. Another
ontology is CONON (Wang et al., 2004), which includes a general upper
ontology containing concepts such as location, person, activity, and com-
putational entities (e.g., service, application, and agent) and specific ontol-
ogies for applications (e.g., a home domain). What is interesting is that
often such ontologies contain concepts that directly correspond to the
physical world yet have existence only in the virtual world.

Ontologies can be used to describe virtual worlds in terms that an end
user can understand. For example, VRML (Virtual Reality Markup Lan-
guage) is used to describe 3-D virtual worlds, but it may be difficult for
non-VRNML programmers to create such 3-D worlds. There has been work
such as by Bille et al. (2004) that aims to use high-level concepts (described
in an ontology) to specify such virtual worlds; the specification is then
used to generate the VRML description. For example, in a domain about
bowling, the concept “bowling ball” can be mapped to a sphere in VRML.
Although such work is still in progress, they illustrate that ontology-based
descriptions of 3-D worlds can be used to describe mirror worlds.

9.7 SUMMARY

This chapter has reviewed work related to the notion of mirror worlds,
which are virtual counterparts of the real world and parts of physical
reality. We have noted similarities across the work in digital cities, projects
such as Nexus, and virtual worlds, smart spaces, and environments. We
have also pointed out the role of ontologies in constructing not only
context models but also mirror worlds. Future work in the area remains,
from deployment of model applications of such mirror worlds to solving
difficult problems related to the construction and maintenance of large-
scale mirror worlds.

REFERENCES

Abowd, G.D., Classroom 2000: an experiment with the instrumentation of a living
educational environment. IBM Systems Journal 38(4), 508-530, 1999.
Arnstein, L., Borriello, G., Consolvo, S., Hung, C., and Su, J., Labscape: a smart
environment for the cell biology laboratory, IEEE Pervasive Computing 1(3),

13-21, July-September 2002, IEEE Computer Society.

Bauer, M. and Rothermel, K., How to observe real-world events through a distributed
world model, Proceedings of the 10th International Conference on Parallel and
Distributed Systems (ICPADS’04), IEEE Computer Society Press.

Benford, S., Bowers, J., Fahlen, L, E., and Greenhalgh, C., Managing mutual awareness
in collaborative virtual environments, Proceedings of VRST'94, Singapore, 1994,
ACM Press, pp. 223-230.

Context Awareness and Mirror-World Models ® 187

Bille, W., Pellens, B., Kleinermann, F., and De Troyer, O., Intelligent modelling of
virtual worlds using domain ontologies, Proceedings of the Workshop of Intel-
ligent Computing (WIC), beld in Conjunction with the MICAI 2004 Conference,
Mexico City, Mexico, 2004, pp. 272-279.

El-Zabadani, H., Helal, A., Abudlrazak, B., and Jansen, E., Self-sensing spaces: smart
plugs for smart environments, Proceedings of the 3rd International Conference
on Smart Homes and Health Telematic (ICOST), Sherbrooke, Québec, Canada,
July 2005.

Ferscha, A., Hechinger, M., Mayrhofer, R., Rocha, D.S., Franz, M., and Oberhauser, R.,
Digital aura, Proceedings of the 2nd International Conference on Pervasive
Computing, Vienna, 2004, pp. 405-410.

Gelernter, D., Mirror Worlds: or the Day Software Puts the Universe in a Shoebox —
How It Will Happen and What It Will Mean, Oxford University Press, U.K., 1993.

Greenhalgh, C. and Benford, S., Massive: a collaborative virtual environment for
teleconferencing, ACM Transactions on Computer-Human Interaction 2(3),
239-261, 1995.

Gruber, T.R., A translation approach to portable ontologies, Knowledge Acquisition,
5(2), 199-220, 1993, available at http://ksl-web.stanford.edu/KSL_Abstracts/
KSL-92-71.html.

Holzhauer, D., Creating a Mirror World for Wireless Sensor Networks, available at
http://www.afrlhorizons.com/Briefs/Apr04/IF0316.htm [accessed: November
2003].

Ishida, T., Digital city Kyoto: social information infrastructure for everyday life, Com-
munications of the ACM 45(7), 76-81, 2002.

Julien, C., Hammer, J., and O’Brien, W.J., A dynamic programming framework for
pervasive computing environments, Proceedings of the Workshop on Building
Software for Pervasive Computing at OOPSLA’05, October 2005, available at
http://www.ece.utexas.edu/~julien/pubs/pervasive05.pdf.

Kalfoglou, Y. and Schorlemmer, M., Ontology mapping: the state of the art, The
Knowledge Engineering Review 18(1), 1-31, 2003.

Lehmann, O., Bauer, M., Becker, C., and Nicklas, D., From home to world — supporting
context-aware applications through world models, Proceedings of the 2nd IEEE
Annual Conference on Pervasive Computing and Communications (PER-
COM’04), 2004, IEEE Computer Society Press.

Nicklas, D. and Mitschang, B., On building location aware applications using an open
platform based on the NEXUS augmented world model, Software and System
Modelling 3(4), 303-313, 2004.

Rodden, T., Populating the application: a model of awareness for cooperative appli-
cations, Proceedings of the Conference on Computer Supported Cooperative
Work, Cambridge, 1996, ACM Press, pp. 87-96.

Wang, X.H., Zhange, D.Q., Gu, T., and Pung, H.K., Ontology based context modeling
and reasoning using OWL, Proceedings of the 2nd IEEE Annual Conference on
Pervasive Computing and Communications Workshops, 2004, IEEE Computer
Society Press, pp. 18-22.

Wren, C.R., Basu, S., Sparacino, F., and Pentland, A., Combining audio and video in
perceptive spaces, Proceedings of the 1st International Workshop on Managing
Interactions in Smart Environments, Dublin, Ireland, 1999.

10

CONSTRUCTING
CONTEXT-AWARE PERVASIVE
SYSTEMS: DECLARATIVE
APPROACHES AND
DESIGN PATTERNS

Chapter 2 has provided an abstract architecture for context-aware perva-
sive systems. There have been many ad hoc approaches for constructing
specific context-aware systems, and perhaps this has been adequate for
the particular application at hand. This chapter explores a general view
of such systems — attempting to capture key abstractions common in
different context-aware applications.

A key abstraction we consider in this chapter is based on the following
question: How does one describe and represent the situations that such
a system should recognize? For instance, if I were building a context-aware
phone, I would like the phone to behave appropriately in certain situations;
the phone could somehow detect a situation via some combination of
sensors and then switch itself to an appropriate mode (e.g., see that I am
in a meeting and put itself to silent mode). Taking a knowledge engineering
approach, one could encode knowledge about how to recognize a set of
typical situations (or situation types) that the phone can be in, and then
rules can be written for appropriate actions in those situations.

Knowledge to recognize a situation typically includes the combination
of required sensors and how these sensors are used, appropriate process-
ing and reasoning with sensory and context information, and additional

189

190 m Context-Aware Pervasive Systems

knowledge to interpret and reason about processed information. There is
a need for some formalism to represent such knowledge about situations;
we are in effect labeling a collection of sensor readings with an interpre-
tation that they represent some situation. In this chapter, we present such
an approach to recognizing and reasoning with situations from the per-
spective of knowledge engineering.

Knowledge engineering has a long history in computing in the context
of expert systems, a breed of systems representing a major contribution
from the field of Artificial Intelligence. In such systems, knowledge rep-
resented in some formal (typically, logic-based) language is systematically
encoded into an expert system shell by, or with the help of, a domain
expert. With situations, one can rely on common sense to provide knowl-
edge about how they might be recognized, unless the situations are very
much specific to an application domain. We (as domain experts) create
explicit representations of situations and reason with them. Because sit-
uations are recognized via values for context attributes acquired via
sensors, the representation given later in this chapter describes situations
by relating context attributes and sensors.

Given subsequently is a representation formalism for situations (in the
next section) first put forward by Loke (2005), which is based on the
principles of logic programming or, more specifically, the language Prolog
(Sterling, 1994). We assume a basic knowledge of Prolog in what is to
follow, but a reader not acquainted with Prolog can still understand the
gist of the exposition, given that Prolog programs are generally readable,
as is typical of declarative languages. As an example, we then examine
the case study of representing the situation of a meeting, and explore
underlying issues. Here, we also point out that the same situation can be
represented in many different ways, just as there are many different ways
to tell if a particular situation is occurring (or if an entity is currently in
a given situation).

Then, we also point out another use of logic programming to reason
with sensory information and context. Thereafter, we move from repre-
senting situations in a formal language toward broader software engineer-
ing concerns, arriving at a preliminary sketch of design patterns for
context-aware applications.

10.1 REPRESENTING SITUATIONS

Reiterated here is the operational (and arguably broader) definition of
context from Dey (2001): “Context is any information that can be used
to characterize the situation of an entity. An entity is a person, place, or
object that is considered relevant to the interaction between a user and
an application, including the user and applications themselves.” Also,

Constructing Context-Aware Pervasive Systems ® 191

studies in such disciplines as situation theory (Barwise and Perry, 1983)
and situation calculus consider the primacy of situation abstraction and
note that humans can individuate a situation. Situation abstraction allows
one to effectively “carve the world up” into manageable pieces, which a
collection of sensors of a system might recognize and respond to. It might
also be possible to combine such pieces to construct complex represen-
tations of situations.

This way of representing situations here takes into account the structure
of a context-aware system as comprising sensors at one level and inference
procedures to reason with context and situations at another level, following
the abstract architecture in Chapter 2. We use a broad definition of sensor
as mentioned in Chapter 2, which is taken to mean not only temperature,
heat, or motion sensors but any device or mechanism that is used to
provide contextual information.

We also consider how to manipulate situations as first-class entities,
and how to reason with our representation of situations within a logic
programming language. We clearly differentiate between sensor readings,
context, and situation in this model.

10.1.1 The Situation Program

Let each sensor be represented by a sensor predicate of the form
<sensor_id>* (<inputs>, <output_readings>).

The output from a sensor is represented by a variable and inputs to
sensors by parameters. Then, a situation program is defined as a collection
of rules (or a logic program), each rule of the form

A-e>G
where “—e->" denotes “is a possible explanation for” (i.e., an abductive
reading), and G is given (in EBNF form) by

G:= A|S|(G,G)|S>E

A is an atomic goal formula (an ordinary Prolog-style term), S is a
sensor predicate, “,” denotes conjunction, S is a situation identifier, and
E is an entity (e.g., user, device, or software agent) identifier. We call the
operator “in situation” denoted by “*>”. A goal of the form S§*>E, read
as a query “E in situation $?,” is a meta-level goal, which succeeds if the
contextual information about E is provable from § as we describe later.
Because S represents clauses (facts and rules that would hold) about the

192 m Context-Aware Pervasive Systems

situation, the intuition of this operator is that £ is in the real-world situation
represented by S if the contextual information about £ holds in S. There
is one distinguished rule (which we call the situation rule) whose premise
is a predicate naming the situation and, optionally, has a parameter
denoting the entity. A rule such as the following

fire_in_room(L) -e->
smoke_detector* (L,positive),

temperature* (L,R), R> 70.

specifies that a fire in room L is a possible explanation for an observed
positive reading on the smoke detector in room L, and the temperature
reading to be above 70°C. Because the predicate smoke_detector*/2
is a sensor predicate, it obtains its values from querying the sensor (i.e.,
the smoke detector). So does the temperature*/2 predicate.

Predicates of the form S*>E allow more complex reasoning to be
specified, where a situation occurring might not only explain sensor
readings obtained at that time, but also clarify why some other situations
have been inferred as occurring (through other abductive rules). For
example, the following rule says that E being in a situation sleeping/1
is a possible explanation for E being in situation not_answering_
calls/1 and E being in situation motionless/1:

sleeping (E) -e->
not_answering calls*>E,

motionless*>E.

Of course, there could be other reasons why E is not answering calls
and E is motionless, such as

dead (E) -e->
not_answering calls*>E,

motionless*>E.

Such is the nature of abductive reasoning, in that more than one
possible explanation might exist for given observations. Several possibil-
ities might be presented to the user as equally possible answers, or the
system might attempt to choose the best explanation based on some other
strategy; for example, try to prove that E cannot be dead. We do not
dwell further on strategies for choosing explanations here.

Constructing Context-Aware Pervasive Systems ® 193

The rules of a situation program permit natural representation of a
situation; i.e., a situation occurring helps to explain certain observations
and constraints that exist, including the existence of some other situation.

As another example, we can define a in_meeting_now situation as
follows. The sensor predicates are location* (E,L), which returns
the location of an entity E in variable L; diary* (E, Event, entry
(StartTime, Duration)), which returns diary entries for entity E
for a matching event; people_in_room* (L,N), which returns the
number of people at a location; and current_time* (T), which takes
no inputs and returns the current time in a variable. The constraints the
situation imposes on such sensors’ readings can then be modeled by the
following logic program:

situation program meetingl:
in_meeting_now(E) -e->
with_someone_now(E),
has_entry_ for_meeting_in_diary(E).
with_someone_now(E) -e->
location* (E, L),
people_in_room* (L,N), N > 1.
has_entry for_meeting in_diary(E) -e->
current_time* (T1),
diary* (E, ‘'meeting’,entry (StartTime, Duration)),

within_interval (Tl, StartTime, Duration).

The program is viewed as a constraint in the sense that if the entity
is in that situation, various relationships as specified earlier should hold.

10.1.2 Modularity
As mentioned, syntax of rules just mentioned allows situation programs

that refer to other situation programs. The same program might be rewrit-
ten as follows:

situation program meetingl:
in_meeting now(E) -e->
with_someone_now*>E,

has_entry_ for_meeting_in_diary*>E.

where with_someone_now is a situation with its own situation program
containing the rule

194 m Context-Aware Pervasive Systems

with_someone_now(E) -e->
location* (E, L),

people_in_room* (L,N), N > 1.

and similarly, the situation has_entry_for_meeting_in_diary.

The ability to split rules into separate situation programs leads to the
advantage of modularity, which encourages reuse. Hence, the operator
“* > might simply be viewed as a mechanism to refer to another situation
program, i.e., with someone_now*>E is different from with_
someone_now (E) only in that the former refers to another situation
program, whereas the latter should be inferred using rules in the same
situation program.

Because we represent situations as explanations for observations, the
procedure for evaluating the in-situation goal is by forward-chaining over
rules in situation programs, as described by Loke (2005). Evaluating such
goals will involve querying the sensors and then checking, given the
sensor readings obtained, if the relationships specified in a situation
program are satisfied.

10.2 FIVE OTHER WAYS TO REPRESENT A MEETING

We have shown one way to represent the situation of a meeting occurring.
In general, if we use a different set of sensors, we can define a different
situation program for a meeting. Five other possibilities are given as
follows, with different assumptions about the situations, the sensors used,
and what sensory information can be obtained (e.g., what objects or
people are being tracked):

1. Colocation of filled coffee cups in a room, as inspired by Gellersen
et al. (2002): We assume a database of coffee cups whose location
is tracked by a positioning technology, retrieved when given a
name, using the predicate has_coffee_cup/2, and a database
of employees and their colleagues, retrieved when given a name,
using the predicate has_colleagues/2. We have the following
rule which says that E is in a meeting with at least one other
colleague explains why E’s coffee cup and at least one of E’s
colleagues’ coffee cups are colocated in the same room, and are
warm (above 50°C):

situation program meeting?2:
in_meeting now(E) -e->

has_colleagues(E, Fs),

Constructing Context-Aware Pervasive Systems ® 195

member (F, Fs),

has_coffee_cup(F, CF),

has_coffee_cup(E, CE),

location* (CE, Room),

location* (CF, Room),

temperature* (CF, TCF),

temperature* (CE, TCE),

TCF > 50, TCE > 50.
The rule works on real-world assumptions about coffee usage at
meetings. Another view is that this rule defines a specific kind of
meeting where people use coffee.
Weight sensors on the floor: We assume a weighing machine on
the floor of a room, which gives the total weight of objects,
including people, on it. A rule such as the following states that a
meeting is occurring in the room E is located in explains why

the weighing machine of the room would have a reading above
some threshold.

situation program meeting3:
in_meeting now(E) -e->
location* (E, Room),
floor_weight_machine* (Room, W),
W > 200.

Devices in the room: Similar to Ranganathan and Campbell (2003),
we assume that the fact that a meeting is going on explains why
lights will be on in the room, PowerPoint is running on the PC in
the room, and the projector is working. The following rule captures
this idea about the room that a person, E, is currently in:

situation program meeting4:
in_meeting now(E) -e->
location* (E, Room),
projector* (Room, switched_on),
room_light* (Room, switched_on),
pc_software_applications* (Room,
powerpoint, running).
We have assumed predicates that will return the status of devices
and PC applications.
Sounds and noises: We assume the presence of microphones in

the room which measure noise levels. Our assumption is that
compared to other times when noise levels are generally low, the

196 m Context-Aware Pervasive Systems

noise level when a meeting is going on will be significantly higher.
Noise levels can be measured by a noise dosimeter' worn by a
person or a sound level meter situated in a meeting room of
interest. We can perhaps do better by matching sounds with voice
patterns of speakers, with the person of interest, E, to see if this
person is present in the meeting, perhaps even analyzing the
person’s speech by noting keywords. Assuming a dosimeter worn
by a user (say, by E), the following rule stating that the person is
in a meeting explains why the noise level as detected by a
dosimeter worn on the person is above a certain level averaged
over a period of time (say measured over 5 min since the time of
the start of the query to determine if E is in a meeting) and why
the average sound readings from a sound meter in the room is
above a threshold for a similar period of time (such a threshold
serves to distinguish the meeting situation in the room from other
times when it is typically quiet in the room) — some calibration
of the meters are required to determine the thresholds:

situation program meeting5:

in_meeting now(E, PersonalMeetingNoiseThreshold)

o>

dosimeter* (E, 5, AvgNoiseLevel),

Q

% average noise level returned

Q

% after 5 minutes of measurement
AvgNoiseLevel > PersonalMeetingNoiseThreshold,
location* (E,Room), % check noise

% level in the room the person is in

meeting room(Room, RoomMeetingSoundThreshold),

Q

% ensure that the room is a meeting room and

Q

% retrieve the threshold

sound_meter* (Room, 5, AvgSoundLevel),

Q

% average sound level measured over 5
minutes

AvgSoundLevel > RoomMeetingSoundThreshold.
5. Use cameras: Cameras can be used to detect the presence of
people in a meeting room using a technique called background

substraction.? This technique can be used to “watch” meeting
rooms for activity.

1 See, for example, http://www.quest-technologies.com/Noise/index.htm.
2 See http://www.flong.com/writings/texts/essay_cvad.html.

Constructing Context-Aware Pervasive Systems ® 197

10.2.1

situation program meetingb6:

in_meeting now(E) -e->
location* (E,Room) ,
people_present* (Room) .

% this is done by a camera watching the room

Observations

We make the following observations, based on the foregoing examples:

Multiple representations: We note that the same situation can be
represented in multiple ways and that we can combine multiple
situation programs in modeling a given situation.

Abductive view: Each situation program captures some aspect of
the situation of a meeting occurring, but each might be viewed
as not totally conclusive; i.e., if all the relationships specified in
a particular situation program hold, one could guess that a
meeting is occurring to a high degree of certainty, though not
with absolute certainty. Hence, we view these situation programs
abductively: a meeting occurring is a possible explanation that
the relationships specified in a particular situation program are
being observed as occurring.

Modular representations: Because each situation program contains
a set of relations, which should hold given that a situation occurs,
one can devise different situation programs (containing different
sets of relationships) for modeling situations. As we have seen with
the in-situation operator, one situation program can refer to others.
Also, one can build sophisticated representations of (more com-
plex) situations in terms of an existing repertoire of situations.
Programming with situations: The situation programs can be
embedded into logic programs using metaprogramming (i.e.,
manipulating situation programs as first-class entities within pro-
grams), and reasoned about within a declarative framework. An
example of this technique is provided in the following section.
Design patterns: From the software engineering perspective, there
is indication from the foregoing examples that design patterns can
be developed for recognizing situations. Taking a situation pro-
gram, one can elaborate on it to spell out particular sensors to be
used and what reasoning techniques might be employed to validate
or, as is the case, to invalidate (with respect to the real world)
each of the mentioned relationships. Based on the same template
of a situation program, different reasoning techniques might be
employed to recognize different relationships in different applica-

198 m Context-Aware Pervasive Systems

tions. For the same situation program, different sensors and under-
lying technology might also be employed according to what is
available; i.e., situation programs can represent situations at a
reasonable level of abstraction, decoupled from underlying tech-
nologies. We provide a sketch of such a design pattern later in
this chapter.

The preceding discussion advocates a high-level explicit representation
of situations for the purposes of context-aware pervasive computing,
approached from the traditional knowledge engineering perspective. The
proposed situation program formalism should be viewed as illustrative,
not prescriptive; other approaches and formalisms can be employed (for
example, we review two other declarative approaches later) but, we
contend, should retain the spirit of this approach. The benefits of such
an approach include enabling abstraction from underlying sensor tech-
nologies, modularity and reuse of representations, and metaprogramming
style manipulation of situation representations.

10.3 METAPROGRAMMING WITH SITUATION
PROGRAMS: EXAMPLES

The in-situation operator “*>” can be embedded into Prolog programs as
a distinguished predicate, evaluated to infer whether an entity E is in a
situation defined by a situation program S. We can then write rules involving
this operator. We call Prolog extended with this use of the operator meta-
programs because the rule references other (situation) programs.

The following example is a rule that states a meeting is currently not
possible among a list of individuals when any one of them is at home.

meeting_not_currently_ possible(Es) :-
member (E, Es) ,

at_home*>E.

Prolog backtracking search applied with the rule will go through every
member of the list Es and returns true for “the goal meeting not possible”
if any one of the members of Es is found to be at home. Note that
normal Prolog evaluation will be employed for evaluating such rules,
except when evaluating the in-situation goals (e.g., at_home*>E), where
a different evaluation strategy (as noted earlier) will be employed for
these goals.

Another example rule here specifies if an individual E is in one situation
from a given list:

Constructing Context-Aware Pervasive Systems ® 199

one_situation(Ss, E):-
member (S, Ss),
S*>E.

This simple rule illustrates metaprogramming, with situation programs
Ss manipulated as first-class entities.

Mapping of situations to actions can be readily encoded. For example,
the following rules describe different actions to take when in different
situations in a context-aware messaging application:

action(storeMessage, E):-
in_meeting*>E.

action (forwardMessage, E):-
at_home*>E.

action(playMessage, E):-

available*>E.

A query such as ?- action(WhatToDo, john) will instantiate the
variable WhatToDo with an action suitable for john’s situation. Default
actions can also be similarly defined.

Complex situations can be defined in terms of existing situation pro-
grams. For example, the following rule defines an entity E as not inter-
ruptible if E is in any one of four situations (not exhaustive):

not_interruptible(E) : -
bathing*>E
; 1n_meeting*>E
; sleeping*>E

; driving*>E.

Note that this presents another way of inferring situations, not abduc-
tively as explanations for observations, but as an abstract situation inferred,
given that one has inferred other situations (from say, observed sensor
readings). The full expressiveness of a Turing complete programming
language such as Prolog can be brought into use for inferring situations.

10.4 ANOTHER DECLARATIVE APPROACH

This section describes another application of the declarative programming
paradigm to the problem of representing and reasoning with sensory
information and context.

200 ®m Context-Aware Pervasive Systems

This approach is termed semantic streams (Whitehouse et al., 2006)
and aims to provide a declarative, logic-based framework for querying
sensor networks. Although this work is still ongoing at the time of writing
of the book, we provide a sketch of the idea as follows.

The idea is to view sensors as services providing sensory data and to
“wrap up” sensors as logic predicates describing sensor data streams. For
example, a Vehicle Detector in a parking deck can be described as a
service (viewed as a rule) that uses a magnetometer sensor (preconditions
of the rule) to detect vehicles and creates an event stream providing the
time and location of detected vehicles (postconditions of the rule), using
the following predicate:

service (magVehicleDetectionService,

needs (
sensor (magnetometer, R)

),

creates (
stream (X) ,
isa (X, vehicle),
property (X, T, time),
property (X, R, region)

Predicates of the form
sensor (<sensor type>, <region>)

define the type and location of each sensor. For example, for the mag-
netometer used in this case, we have a fact of the form

sensor (magnetometer, [[60,0,0], [70,10,10]1]).

which declares a magnetometer sensor as covering a region corresponding
to a 3-D cube defined by a pair of [x,y,z] coordinates, i.e., vehicles within
this region are detected by the sensor. Detection of vehicles leads to
instantiation of the events stream in variable X.

Services can be composed by matching the preconditions of a service
with the postconditions of another service. For example, the following
service takes an event stream from the preceding service and produces
a histogram:

Constructing Context-Aware Pervasive Systems ® 201

service (histogramService,
needs (
streams (X) ,
isa (X, vehicle),
property (X, T, time)
)
creates (
stream(Y),

isa(Y, histogram)

Note that the preconditions of the histogramService matches the
postconditions of the magVehicleDetectionService.
Consider a query to return an event stream of detected vehicles, such as

?- stream(X), isa(X, histogram).

This query will be evaluated by a process similar to backward-chaining,
creating a chain of services in which the postconditions of a service
matches the preconditions of another service. For example, the foregoing
query will match the postconditions of the histogramService, which
leads to a subgoal that comprises the preconditions of the histogram-
Service, which, in turn, as we have seen, will match the postconditions
of the magVehicleDetectionService. Instantiating and executing
the magVehicleDetectionService leads to low-level queries on
the magnetometer sensors.

The semantic streams approach differs from situation programs, in that
it does not seek to represent the notion of situations, but through the
declarative programs interprets sensory data at a high level of abstraction.
For example, the detection or presence of vehicles is represented declar-
atively and can be combined into a knowledge base which maps collected
context information (such as the presence of vehicle) to some high-level
situation. Finally, we note the modularity achieved in the semantic streams
approach using the service abstraction.

10.5 TOWARD DESIGN PATTERNS FOR CONTEXT-AWARE
APPLICATIONS: SITUATION PATTERNS

These examples of situation programs capture knowledge about recog-
nizing particular situations, either abductively from observed sensor read-

202 m Context-Aware Pervasive Systems

ings and relationships between such readings or deductively given that
certain situations are assumed to have been recognized. A situation pro-
gram describes a way in which a type of situation can be recognized. It
is possible to apply the same situation program in different places to
recognize the same type of situation.

For example, if we consider the situation program to recognize meet-
ings via the colocation of coffee cups as given earlier, then that situation
program can be applied to one’s own office in which there are sensors
to track the location of the relevant coffee cups. The same situation
program might be applied with a different set of coffee cups in someone
else’s office. Hence, it is in this sense that a situation program can be
used to recognize a type of situation (i.e., meetings) as opposed to merely
recognizing a particular meeting happening at a certain place and at a
certain point in time. But the particular application of a situation program
depends on the lower-level sensors (in this case, the actual set of coffee
cups and the associated tracking technology used), and relies on the
interface made between what is referenced in the situation program and
the actual sensors available. Hence, a situation program can be considered
a high-level template or pattern for recognizing a type of situations.

Design patterns are a popular design artifact for object-oriented pro-
gramming for capturing reusable programming idioms and techniques,
applicable to different software systems (Gamma et al., 1995). In essence,
a design pattern records experience in designing systems, so that others
who want to build something similar need not start from scratch.

According to Christopher Alexander,’

Each pattern describes a problem which occurs over and over
again in our environment and then describes the core of the
solution to that problem in such a way that you can use this
solution a million times over, without ever doing it the same
way twice.

A design pattern is more than a programming template but often
contains documentation concerning the design. From Gamma et al. (1995),
on object-oriented software design patterns:

Each design pattern systematically names, explains, and evalu-
ates an important and recurring design in object-oriented sys-
tems. Our goal is to capture design experience in a form that
people can use effectively.

3 http://www.patternlanguage.com/leveltwo/caframe.htm?/leveltwo/../bios/designpat-
terns.htm.

Constructing Context-Aware Pervasive Systems ® 203

We sketch here ideas toward developing design patterns for recogniz-
ing situations, or what we term situation patterns.

Suppose one is designing such a system, one would need to think of
what context information is required, the sensors to use to acquire such
context and how they should be organized, what kind of reasoning to
use for processing the sensor results, and effectiveness of such a setup.
Experiences in the design of this system can be captured in a situation
pattern. A template might contain the following information, based on
object-oriented design patterns:

Pattern name: A name that conveys the idea of the pattern succinctly.

Intent: A short statement that captures the rationale and intent of the
pattern, and what problem the pattern intends to solve. What
situation or situations does the pattern aim to recognize?

Motivation: What motivated the pattern in the first place, as well as
what motivated the method for solving the problem as proposed
by the pattern?

Applicability: What are circumstances under which the pattern is
useful? Are there specific applications where the pattern is partic-
ularly helpful?

Context and sensors: What type of sensors are used and what contextual
information are the sensors used to acquire?

Processing and reasoning: How is the data from the sensors processed
— what specific data analysis (e.g., data mining or learning) tech-
niques are used? Also, is there reasoning about context to infer if
some situation is occurring? What kind of reasoning is used?

Consequences: What is the outcome of using the pattern? The effec-
tiveness of the pattern is reviewed.

Implementation: Discuss the actually implemented case study, high-
lighting practical considerations when applying the pattern to imple-
ment a solution. What are the issues to watch out for during
implementation; i.e., what are the practical considerations? What
difficulties could be encountered? What are the actual sensors used
and how many? What hardware and software are used with the
sensors? What is the setup and the physical characteristics of the
place where the sensors have been deployed?

Sample code, known uses, and related work and patterns: Sample code
from the implementation can be attached here. Also, known uses
of the pattern can be recorded, as well as related patterns for
recognizing similar situations.

The first example is a pattern which is developed based on the work
by Fogarty et al. (2005) on how to recognize when it is appropriate to

204 wm Context-Aware Pervasive Systems

interrupt someone (say, in the office environment), i.e., to predict
human interruptibility.

Pattern name: Simple estimation of human interruptibility.

Intent: The pattern aims to capture a solution for effectively recognizing
the situation whereby a human being can be interrupted in a socially
appropriate manner.

Motivation: The aim is to enable proactive devices that may interrupt
users, such as mobile phones, e-mail, and other messaging appli-
cations, but in a socially considerate way. This would then not
require the user to disable the devices manually.

Applicability: The pattern focuses on users in everyday office situations.
An experimental implementation of the pattern as described here
shows that the pattern can provide estimates of human interrupt-
ibility as good as or better than estimates provided manually by
humans watching audio and video recordings of the environment.

Context and sensors: The sensors used are:

B A microphone in the corner of an office to detect noise level
(e.g., to determine if the person is talking), calibrated against
background noise.

B Computer clock to return the time of day.

B A sensor to detect when the phone is in use.*

B Computer returning activity information for the mouse and key-
board (to determine if the person is busy at the computer).

Readings from such sensors can be combined to estimate human in-
terruptibility.

Processing and reasoning: Data from the sensors are processed to give
an estimate of how busy the user currently is. Calibration of the
microphone is required to determine background noise. The sensor
to detect phone use and computer input activity indicates that the
user is doing something and perhaps should not be interrupted.
Levels of interruptibility can also be defined according to the sensor
readings and the user’s activity.

Consequences: The pattern can be used to estimate interruptibility as
accurately as human estimators can, using a set of low-cost sensors
with simple data processing.

Implementation: Experimentation as documented in Fogarty et al.
(2005) was done using simulated sensors for the telephone, key-
board, and mouse.

4 http://www.maxim-ic.com/appnotes.cfm/appnote_number/3521 contains informa-
tion about a device called a “telephone nanny” which can track such phone usage.

Constructing Context-Aware Pervasive Systems ® 205

Sample code, known uses, and related work and patterns: Other studies
such as Vorburger and Bernstein (2005) have employed other sensor
data such as video data besides audio and time of day. Video data
can be analyzed for the presence of one or more people in the office.

The preceding pattern example lacks detail in the implementation (e.g.,
details of the microphone and phone use sensor used), given that it is
derived from the study cited, which simulated some of the sensors. Actual
deployments of the system with sensors can provide further information
under the implementation section of this pattern. Moreover, there has
been other work on using cameras to estimate human interruptibility, and
such work can be captured in a similar pattern. Other context-aware
applications can be similarly captured in a design pattern, such as recog-
nizing a meeting, instructions to print addressed to the nearest printer, or
find the nearest ATM.

10.6 SUMMARY

This chapter has reviewed declarative approaches to constructing context-
aware applications and has considered design patterns for context-aware
applications, involving an explicit representation of know-how in recog-
nizing situations and documentation of such know-how in two different
forms, as well as involving different emphases. The idea in both, however,
is to illustrate how to capture reusable knowledge to facilitate building
this new breed of applications.

ACKNOWLEDGMENT

This chapter contains portions reprinted with permission from “On rep-
resenting situations for context-aware pervasive computing: six ways to
tell if you are in a meeting by Loke.” PerCom Workshops 2006, pp. 35-39
©2006 IEEE.

REFERENCES

Barwise, J. and Perry, J., Situations and Attitudes, Cambridge, MA: MIT-Bradford, 1983.

Dey, AK., Understanding and using context, Personal and Ubiquitous Computing
Journal 5(1), 5-7, 2001, Springer.

Fogarty, J., Hudson, S.E., Atkeson, C.G., Avrahami, D., Forlizzi, J., Kiesler, S., Lee, J.C,,
and Yang, J., Predicting human interruptibility with sensors, ACM Transactions
on Computer-Human Interaction (TOCHD 12(1), 119-146, March 2005.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements of
Reusable Object-Oriented Software, Addison Wesley Longman, Inc., US.A,
1995.

206 ®m Context-Aware Pervasive Systems

Gellersen, H.-W., Schmidt, A., and Beigl, M., Multi-sensor context-awareness in mobile
devices and smart artifacts, Mobile Networks and Applications (MONET) 7(5),
341-351, 2002.

Loke, S.W., Representing and reasoning with situations for context-aware pervasive
computing: a logic programming perspective, The Knowledge Engineering
Review 19(3), 213-233, 2005, Cambridge University Press.

Ranganathan, A. and Campbell, R.H., An infrastructure for context-awareness based
on first order logic, Personal and Ubiquitous Computing Journal 7, 353-364,
2003, Springer.

Sterling, L., The Art of Prolog, Cambridge, MA: MIT Press, 1994.

Vorburger, P. and Bernstein, A., Towards an Artificial Receptionist: Anticipating a
Persons Phone Behavior, Technical Report, University of Zurich, Department
of Informatics, 2005, available at http://www.ifi.unizh.ch/ddis/staff/goehring/
btw/files/tech_vorburger_large.pdf.

Whitehouse, K., Zhao, F., and Liu, J., Semantic streams: a framework for composable
semantic interpretation of sensor data, Proceedings of the 3rd European Work-
shop on Wireless Sensor Networks (EWSN 2006), Zurich, Switzerland, 2006, pp.
5-20.

11

A FUTURE WITH
AWARE SYSTEMS

Our surroundings resonate not only with living beings but also with
nonliving objects that exhibit the behavior of living beings. Aware systems
aim at enriching our lives with new experiences too difficult to achieve
in the past but possible in this era of the computer. But it is not only
experiences but also the new functionalities and conveniences that aware
systems can enable which make them an important development today
and in time to come. In some ways, awareness might be thought of as a
relabeling of various kinds of existing functionality on one hand and as
a concept too difficult to fully realize on the other.

This book contends that aware systems are a useful metaphor for
practical systems, a philosophy about what can be, and has sought to
examine this concept of context awareness as manifested in different areas
of computing. Architectural considerations have been given, and examples
of software architectures for implementing context awareness in diverse
settings have been illustrated. We can observe the commonalities across
different application areas and see cross-cutting concerns.

11.1 THE EMERGING FUTURE: TAKING AWARENESS
FOR GRANTED

What does a future with aware systems look like? Bring home new
furniture and it changes color and pattern like a chameleon to blend
beautifully into the living room. Wrestling with computers and appliances,
we get error messages that we always understand and can do something
about, irrespective of our background knowledge or language. Our
watches and clocks always tell the right time, wherever we are. Devices

207

208 m Context-Aware Pervasive Systems

no longer rudely interrupt us but merely amplify our senses and our basic
human capabilities. Systems seem to know what is going on, even if we
do not. With aware cars and roads, no one dies in road accidents, unlike
today. After repeating the contents of previous chapters, the list goes on.

11.2 SCALABILITY AND USABILITY

Two concerns that we will consider are scalability and usability. Another
topic of interest would be synergies among context-aware artifacts from
effects that one artifact could have on another. For instance, if we have
blinds that automatically adjust themselves according to changing sun-
light and a preset measure of light within the house with devices that
react to changes in light levels, then there could be cascading effects,
where the actions of some device change the context for another device,
thus triggering another action, which, in turn, changes the context for
some other device, triggering further actions. Another scenario is a
change in context such that multiple devices respond (perhaps not in
a coordinated way), albeit this might not be a problem depending on
the nature of the responses.

How should users behave in a world of aware objects and places?
Users can have their actions and behaviors observed, interpreted, and
responded to by aware objects and places. But users will want ultimately
to remain in control — not just in the case of device failures — and
might prefer manual systems with full control over automatic behaviors
without control, given a need to choose between the two. However,
somewhere in between might be ideal, where users are ready to accept
automatic behaviors, sacrificing some control for convenience and com-
pliance reasons.

What would favor automation is that the actions taken in response to
context triggers are reversible or that the actions taken do not have severe
consequences. Rules which map context triggers to actions can be labeled
with such information about consequences. A proposal is to have rules
of the following forms:

IF Uncertainty(Context) < U
and Severity(Action) < S

THEN DO Action

which states that if uncertainty in ascertaining a context (e.g., a location)
is less than a given threshold and the severity of action (e.g., send an
advertisement) based on some predefined scale is less than a given
threshold, then the action is performed (without consulting the user), or

A Future With Aware Systems ® 209

IF Uncertainty(Context) > U’ and Severity (Action)
> S’
THEN DO Ask-User

which states that if the uncertainty in ascertaining the context is more
than a threshold and the severity of action is more than a given threshold,
then the action is to ask the user first rather than performing the action
immediately. Such control rules can map context to actions in some
situations, consult the user sometimes, and perhaps not take any action
in others. Hence, sets of possible actions, rather than merely binary
decision rules, can be considered involving the user to different extents
(and, correspondingly, automation to different extents). User interface and
usability issues for context-aware computing, of course, would require
application-specific solutions and actual user testing.

11.3 FINAL WORDS

The reader will, perhaps, not find it too difficult to think of software or
everyday artifacts not mentioned in this book that can and should be
aware but are not. After all that has been said, readers will have the
opportunity to implement the designs in this book for their respective
applications, modify and adapt the designs to suit their own purposes, or
invent and design new context-aware objects to distinguish themselves in
the market. Innovations or improvements can perhaps happen when one
starts to ask, “What if X is an aware system?” — whatever X may be —
and ask this question often enough. A context-aware X can also be context-
aware in different ways, limited only by the imagination. Today’s aware
X might be a far cry from the future aware X. We are expecting a future
full of aware systems, and once enough of them pervade our lives, we
might actually become unaware of such aware systems. Mothers in the
not-so-distant future can look forward to the aware bicycle and an enthu-
siastic cry from their child, “Look ma, no hands, and no hands needed!”

INDEX

A

ADbIMA, 108
Active power state, 148
Activity-based computing models, 23
Advertising, location-based, 39
Agent Factory, 108
Agents, See Intelligent software agents
Aglets Mobile Agent Toolkits, 116-117
ALIVE, 184
Ambient Agoras project, 79
Ambient intelligence, 3
Ambient services, 34—49, See also Mobile
services
consumer buying behavior model,
39-42
cross-network roaming, 34-35
future E-marketplaces, 38—42
libraries, 44
location-based reverse auctions, 42, See
also Reverse auctions
office building example, 42—44
service boundary granularity, 35-37
shopping center example, 37-38
software architecture for, 44—49
time measurements, 46—49
Ambiguity resolution, 24, 137
Aml infrastructure, 80
Apache Axis Web Services, 116
Apache Tomcat Web Server, 116
Application programming interface (APD)
mobile phone, 89-90
sensor networks, 149
Artificial intelligence (AD, 190
Auctions, 41, See also Proximity-based
reverse auctions
Augmented World Modeling Language
(AWML), 22, 175, 183, 185

Augmented World Query Language
(AWQL), 22, 175, 183

Aura, 177-179

Authentication, 161

proximity login, 162-163

Automotive applications, 17

Autonomic Communication project, 132

Autonomic computing, 3

Availability of information, 162

Avatars, 176, 177

Aware objects, 75-81, See also Context-
aware artifacts; specific objects

Aware spaces, 185

B

Background subtraction, 196

Battery conserving operations, See Power
use management, context-
aware sensors

Bayesian reasoning, 24

BDI agents and Web services, See Context-
Aware Lightweight Mobile BDI
Agents

Beliefs component, 112

Beliefs-Desires-Intentions (BDD logic, 107,
109

context-aware mobile agent framework,

111-115, See also Context-
Aware Lightweight Mobile BDI
Agents

Berkeley motes, 18, 145, 152

BiD Smart Space, 184

Biometrics, 160

BlipNet, 34

Bluetooth, 16-17, 33, 34

BlipNet, 34

211

212 ®m Context-Aware Pervasive Systems

Mobile Service Toolkit support, 49
object mutual awareness, 179
personal area networks and, 81
Business-to-business (B2B) collaboration,
39
Bus tour, virtual, 182
Buyer coalitions, 40

C

Call Processing Language (CPL), 131-132
Call screening, 130
CALMA, See Context-Aware Lightweight
Mobile BDI Agents
CalmaAgentManager, 115-116
Camera, context aware, 78
CAMP-UP, 84-92, 127
application programming interface,
89-90
example scenarios, 93-98
on airplane, 97
attending lecture, 93-94
in cinema, 97
driving, 96
in hospital, 95
sleeping at home, 95-96
Phone Manager, 86, 88-89
prototype, 90-91
space control over device functionality,
98-99
Space Manager, 84-88
space policy, 87-88
system interactions, 85-90
CASIS, 137
Cellular phones, See Mobile phones
Cerberus, 166
Chairs, 76
Chameleon mug, 77
Chameleon tables, 76
Classroom 2, 184
Client application, MHS architecture, 54
Clothing, smart, 79
Coalitions of buyers, 40
CoBrA, 26
Code caching, 54
Code server, 54
ComMotion system, 130
Communication, context-aware, See
Context-aware communication
Communication server, context-aware
sensor network, 149

Community stack, 51-52
Computer telephony integration (CTD
server, 129
Confidentiality, 161
Configuration management, 23
CONON, 186
Consumer buying behavior model, 39-42
Content-based addressing, 139
Context, definitions and concepts, 4-5, 190
Context action datastore, 151
Context Aggregator, 85, 89
Context-aware addressing, 129, 133, See
also Context-aware commands;
Context-aware communication
content-based addressing, 139
event notification, 63, 138, 139
namespaces and logical areas, 139-140
robots, 139-140
smart space, 136
software agents, 138-140
Context-aware artifacts, 6, 9, 75-83, See also
specific objects
addressing and commanding, 133-138,
See also Context-aware
addressing; Context-aware
commands
architectural design space for, 82-83
aware objects, 75-81
collaboration between, 81
examples, 76-79
infrastructure-supported, 76, 80-81
mobile phones, See Context-aware
mobile phones
mutual awareness model, 179-181
self-supported, 76-80
sensors, 79-80
virtual object associations, 81
Context-aware commands, 133-138
disambiguation, 137
polymorphism, 135
situation semantics, 134—137
smart space, 136
Context-aware communication, 127-133
addressing, See Context-aware
addressing
application combinations, 131
call screening, 130
call services, 131-132
CAMP-UP, See CAMP-UP
ComMotion system, 130
language translation, 132

Index ®m 213

messaging, 129-130, See also Message
Hanging Services

presence awareness, 130

routing, 128-129

for software agents, 138-140

Context-Aware Lightweight Mobile BDI

Agents (CALMA), 105, 109-125
architecture, 109-116
beliefs, desires, intentions
framework, 109, 111-115
components, 112-114
libraries, 114
mobile device component, 116
server component, 115-116
context awareness, 112, 122
illustrative scenarios
booking movie tickets, 117
finding IDD calling card provider,
117, 120
mobile agent toolkit add-on, 109, 112
performance, lightweight vs. full
versions, 122-124
programming using plan scripts, 114
prototype implementation, 116-124
enabling context awareness, 122
enabling lightweight behavior, 120
illustrative scenarios, 117, 120

Context-Aware Messaging Service (CAMS),

129

Context-aware mobile phones, 84-99

application programming interface,
89-90
CAMP-UP system, 84-92, See also CAMP-
up
examples, 78-79
example scenarios
on airplane, 97
attending lecture, 93-94
in cinema, 97
driving, 96
in hospital, 95
sleeping at home, 95-96
ontology-based approach, 84
sensors, 19, 78

Context-aware mobile services, See Mobile

services

Context-aware mobile software agents,

105-125, See also Context-
Aware Lightweight Mobile BDI
Agents; Intelligent software
agents

Context-aware pervasive computing
abstract architecture, 24-25
ambient services, See Ambient services
analogies for understanding, 13-14
applications, 7-8
communications, See Context-aware
communication
elements of
acting, 24
reasoning and knowledge models,
20-24
sensing, 15-20, See also Sensors
emerging issues and applications,
207-209
infrastructures, 26-27
intelligent software agents, 14
mobile services, See Mobile services
related concepts and definitions, 4-6
scalability and usability, 208
security issues, See Security
sensors, See Context-aware sensor
networks
situation concept, 6-7, See also Situation
representation
software agents, See Intelligent software
agents
user controls, 60-61, 208-209
Context-aware safety, 169-170
Context-aware security systems, 162-169,
See also Security
Context-Aware SensorNet (CASN)
middleware, 145
Context-aware sensor networks, 143-156
architecture, 148-152
CASN middleware, 145
energy-use adaptations, See Power use
management, context-aware
sensors
experimental investigations, 153-156
message size, 155
sleep mote, 155-156
transmission rates, 154
finite-state machine, 146-148
framework, 145-152
modeling power states, 146-148
pig farm scenario, 152-153
process steps, 151-152
sensor node programming, 148-149
sensor role differentiation, 145-146
Context-aware speech system, 137
Context-based policy control, 53, 55-60

214 m Context-Aware Pervasive Systems

conflict resolution, 54-55
policy language design criteria, 57-58
Windows Media Player applications,
55-60
Context-based security, 160-161, See also
Security
Context Broker Architecture (CoBrA), 26
Context collector, MHS architecture, 54
Context Fabric, 26
Context Interpreter, CAMP-UP system, 85,
89
Context locator service, 149
Context mining service, 149
Context Modeling Language (CML), 132
ContextPhone, 78-79
Context Toolkit, 26, 168
Context trigger engine, context-aware
sensor network, 149
Contextual graphs, 23-24, 165
Context view, 164
Couches, 76
CRUMPET, 39
Cups, 77, 80, 81, 194-195, 202

D

Data mining, 149

Dead power state, 148
Denial-of-service attacks, 162
Design patterns, 202-203

Digital cities, 181-183

Digital City Kyoto, 181-182
Disabled users, 132
Disappearing-computer initiatives, 3
Dolls, context aware, 77

E

EasyLiving Project, 17

E-communities, place-based, See Place-
based electronic (PBE)
communities

E-CWE, 39

Efficiency of language, 135

Ekahau, 16, 49

Ekahau Positioning Engine (EPE), 44, 48

Elvin, 68, 139

E-marketplaces, 3842, See also Ambient
services; Web services

reverse auctions, 39, 42, 61-70, See also
Proximity-based reverse
auctions
Emerging issues and applications, 207-209
Energy-saving adaptations, context-aware
sensors, See Power use
management, context-aware
Sensors
E-parking, 39
E-speak, 31
Event notification, 63, 138, 139
Expert systems, 190
eXtensible access control markup language
(XACML), 168
eXtensible Markup Language (XML), 58
Call Processing Language, 131
CALMA architecture, 109, 114
context-based policy language design,
58
language wrapper for mobile BDI agent,
114
role-based access control policy,
167-168

F

Facial recognition technology, 131
Feature-based inference techniques, 21
Finite-state machine (FSM), 146-148
Floors, weight sensors in, 195

Focus, 177-179

Fuzzy logic, 24

Fuzzy rules, 145

G

Gaia, 26
Generalized Policy Definition Language
(GPDL), 167
Global positioning system (GPS)
applications, 16, 33
context-aware communication, 130
location-based services, 39
Global System for Mobile Communications
(GSM) networks, 34
Goals component, 112
GPS, See Global positioning system (GPS)
applications
Grasshopper, 106, 116

Index m 215

H

Habitat monitoring, 144

Hanging Messages, 129, See also Message
Hanging Services

Hello.Wall, 79

Hierarchy override policy, 55

Highly_Active power state, 148

Hive project, 138

Hot-spots, 34

Hydrogen, 26

IDD calling card, agent for finding, 117, 120
Idle power state, 148
Information agents, 14
Infrared beacons, 33
Infrastructure, 2627, 80
Infrastructure-supported context
awareness, 76, 80-81
Insect senses, 14
Instant messaging spam, 130
Integrity, 161
Intelligence augmentation, 2
Intelligent job site, 184-185
Intelligent software agents, 9, 14
Beliefs-Desires-Intentions (BDD logic,
107, 109, 111-115, See also
Context-Aware Lightweight
Mobile BDI Agents
context-aware communication, 127,
138-140, See also Context-aware
communication
event notification, 63, 138, 139
interactions in mirror worlds, 174
interactions with Web services, 105,
109-125, See also Context-
Aware Lightweight Mobile BDI
Agents
location-based shopping support, 39
mobile, 105-106, See also Mobile agents
place-based E-community services,
50-51
platforms for ubiquitous computing,
108-109
reverse auctions and, 61-70, See also
Proximity-based reverse
auctions
Intention component, 114

Internet-based services, See Web services

Interpreter component, mobile BDI
software agent, 114

Invisible computing, 2-3

iPAQ, 46

J

JADE-LEAP agent applications, 65

Java 1.1 API, 149

Java 2 Microedition (J2ME) application
programming interface, 89-90

KSOAP, 117

Java Native Interface (JND), 112

Java Virtual Machine, 18

Jeode Embedded Virtual Machine (EVM),
117

Jini, 137

Job site, intelligent, 184-185

K

Knowledge-based models and approaches,
21-24

Knowledge engineering, 190

kSOAP, 117

Kyoto, 181-182

L

Labscape, 184
Lamps, 79, 134-135, 137
Language translation, 132
Library services, 44
Lightweight plan library, 114
Live Contacts, 130
Location, 8-9
context-aware security, 162, 163
granularity, 33
Location-based advertising, 39
Location-based E-communities, 49
Location-based reverse auctions, 39, 42, See
also Reverse auctions
Location-based services, 16-17, 33-34, See
also Ambient services
Location models, 21-22
Nexus, 22
semantic proximity, 22
Location sensors, 19-20

216 ®m Context-Aware Pervasive Systems

Logical areas
context-aware addressing system, 139
granularity for ambient services, 35-37
Logic programming, 23

M

Magic mirror, 184
Magnetometer, 200
Mailing list system, 129
Manual control issues, 60-61, 208-209
MASSIVE, 177
MatchMaker Agent, 115-116
Mediacup, 77, 81
Mediation techniques, 24
Medication-reminding system, 77
Meetings, smart technology applications,
183
situation programs, 193-198
cameras, 196-197
coffee cup colocation, 194-195, 202
device status, 195
sounds, 195-196
weight sensors, 195
Merchant brokering, 40
Mercury, 128-129
Merging policy, 55
Message Hanging Services (MHS), 52-61
architecture, 53-55
context-based policy control, 53, 55-60
Hanging Messages, 129
policy conflict resolution, 54-55
policy language design criteria, 57-58
user controls, 60-61
Messaging, context-aware communications,
129-130, See also Message
Hanging Services
Microelectromechanical sensors (MEMS), 18
Microsoft. NET Compact Framework (CF),
45
Mirror world models, 10
augmented-world model, 22, 175-176
aura, focus, and nimbus, 177-179
digital cities, 181-183
multi-user dimension games, 173, 176
mutual awareness model, 179-181
Nexus model, 175-176
object interactions, 177-179
ontologies, 185-186
software agent interactions, 174

virtual worlds and environments,
176-180
MIThril Context-Aware Cell Phone Project,
78
Mobile Agent Environment (MAE), 106
Mobile agents, 105-106
Beliefs-Desires-Intentions (BDD) logic,
107, 109, 111-115
context-aware addressing, 138-140
context-aware BDI agents for Web
service interactions, 105,
109-125, See also Context-
Aware Lightweight Mobile BDI
Agents
context awareness, 106, 112, 122
performance, lightweight vs. full
versions, 122-124
platforms for ubiquitous computing,
108-109
resource-constrained environments, 106
toolkits, 106, 109, 112, 117, 138
Web service interaction scenarios,
117-120
Mobile Client Application, 44, 45
Mobile code
context-based controls and policies,
52-61, See also Message
Hanging Services
context-based policy control of Media
Player service, 55-60
Mobile commerce (M-commerce), 39
Mobile phones, context-aware, See Context-
aware mobile phones
Mobile services, 31-33
ambient services, 34-49, See also
Ambient services
content adaptation, 32
context for, 33
event-based observation, 68-70
location-based services, 16-17, 33-34
Media Player applications, 53, 55-60
mobile code and context-based controls
and policies, 52-601, See also
Message Hanging Services
multiagent system and reverse auctions,
61-70, See also Proximity-based
reverse auctions
place-based electronic communities,
49-52, See also Place-based
electronic (PBE) communities

Index m 217

reverse auctions, 39, See also Proximity-
based reverse auctions
time measurements, 46—49
Web services and, 31-32, See also Web
services
Mobile Service Toolkit (MST), 49
Mobile virtual communities, 50
MOO, 176
Motes, 18, 145, 152
Movie ticket booking, 117
Multi-user dimension (MUD) games, 173,
176
Mutual awareness model, 179-181
MyCampus, 108
MyGROCER, 39

N

Negotiation stage, consumer-buying model,
41

NesC, 148

Nexus, 22, 175-176, 182, 183, 185

Nimbus, 177-179

Noise level monitoring, 195-196

Nonrepudiation, 161

(@)

Office building, 42-44
Ontologies, 5, 23, 185-186
Ontology-based context-aware phone, 84

P

PARCTAB virtual whiteboard, 129
Parking service applications, 42, 200-201
PBE communities, See Place-based
electronic (PBE) communities
Perceptive spaces, 184
Personal area networks (PANs), 81
Personal digital assistants (PDAs), 32
Personal Handyphone System (PHS), 129
Pervasive computing, See also Context-
aware pervasive computing
situation concept, 6-7
terms and definitions, 2—4
Phone card finding agent, 117
Phone Manager, 86, 88-89
Physiological monitors, 78
Pig farm, 152-153

Pill bottle, 77
Place-based electronic (PBE) communities,
49-52
multiagent architecture, 50-51
user movements and the community
stack, 51-52
PlanManager, 115-116
PointRock, 37-38
Point Servers, 34
Policies interpreter, 53
Policy conflict resolution, 54-55
PowerTOSSIM, 153
Power use management, context-aware
sensors, 144, 145, See also
Context-aware sensor networks
experimental investigations, 153-156
finite-state machine, 146-148
input alphabet, 146-147
output alphabet, 147
power states, 148
Power use monitoring, context-aware
security systems, 163
Privacy issues, 27, 170
Proactive computing, 3
Product brokering, 40
Prolog, 23
metaprogramming examples, 198-199
situation programming, 190-199
Proximity advertising, 39, 40
Proximity-based reverse auctions, 42, 61-70
event notification, 63
multiagent architecture, 63-65
broker agent, 64, 67
event-based observation, 68-70
interaction protocols, 67-68
observer agents, 64
prototype, 65
user agent, 63-64, 65, 67
user interface, 65
vendor agents, 64, 67

R

Radiofrequency identification (RFID) tags,
15-16
aware object associations, 81
context-aware security, 162
intelligent medication dispensers, 77
object mutual awareness, 179
Rain sensing, 144

218 m Context-Aware Pervasive Systems

Reasoning, context-aware system
functionality, 20-24

Refrigerator, 80

Relational theory, 134

Resource Monitor, CALMA BDI agent, 112

Reverse auctions, 39, 41, 61-70

proximity-based, 42, 61-70, See also

Proximity-based reverse
auctions

RFID, See Radiofrequency identification
(RFID) tags

Robots, context-aware addressing, 139-140

Role-based access control, 167-169

Routing, context-aware communication,
128-129

S

Safety, context-aware, 169-170
Scalability, 208
Security, 9, 27, 159-170
biometrics, 160
context-aware safety, 169-170
context-aware systems, 162169
ad hoc associations, 164
communications, 163
contextual graphs, 165
context view, 164
decision engine, 163-164
location information, 162, 163
logic, 166-167
policies, 164-169
proximity login, 162-163
role-based access control, 167-169
context-based, 160-161
impacts of context awareness, 159-161
finer-grained security, 159-160
flexibility, 160
traceability, 160
policies, 162, 164-169
privacy issues, 170
traditional models, 159, 161-162
Security context, 161
Self-supported context awareness, 76-80
Semantic proximity, 22
Semantic streams, 200-201
Sensay, 78
Sensetable, 77
Sensor Box, 78
Sensor networks, 9
Sensor predicate, 191

Sensors, 15-20, 79-80, 143-156, See also
Context-aware sensor networks
context-aware system abstract
architecture, 25
definition, 19
digital city implementation, 182
energy-use adaptations, 144
infrastructure approach, 26
location-based applications, 16-17
location sensors, 19-20
microelectromechanical (MEMS), 18
mobility, 18-19
motes, 18, 145, 152
multisensor data fusion, 20-21
placement, 17
RFID tags, 15-16
situation recognition and representation,
189-191
SensVest, 78
Sentient computing, 4
Sentient Object Model, 26
Sentient office, 1
Service boundaries, 35-37
Service Calculation Engine (SCE), 44, 45
Service classification space, 42
Service Database, 45
Session Initiation Protocol (SIP), 131-132
Shelf with pressure sensors, 77
Shopping mall, ambient services example,
37-38
Short-range wireless networking
technology, 33, See also
Bluetooth
ambient services, 34
place-based electronic communities,

49-52
Sink, 77
Site-specific services, 49
Situation

definition and concepts, 67

logic programming, See Situation
programming

ontologies, 5, 23

patterns, 203-205

real-life patterns, 21

semantics, 134-137

Situation programming, 23, 190-199

application across different locations,
202

design patterns, 197-198

meeting representation, 193-198

Index ®m 219

cameras, 196-197
coffee cup colocation, 194-195, 202
device status, 195
discussion, 197-198
sounds, 195-196
weight sensors, 195
metaprogramming examples, 198-199
modularity, 193-194, 197
Situation representation
abstraction, 191
design patterns, 202-203
logic programming, 190-199, See also
Situation programming
semantic streams, 200—201
situation patterns, 203-205
SituAwarePhone, 84
Sleep mote experiment, 155-156
Sleep power state, 148
Small Programmable Object Technology
(SPOT), 18
Smart cards, proximity login, 162163
Smart cars, 17
Smart clothing, 79
Smart dust, 18
Smart environments, 2, 183-185
Smart home safety scenario, 169
Smart house, 184
Smart-Its, 19
Smartlands project, 183
Smart mobs, 50
Smart space, 136, 184
Smarttable, 76
SOAP, 117
SOCAM, 26
Soft/hard rules override policy, 55
Software agents, See Intelligent software
agents
Soil moisture monitoring, 144
SOUPA, 185
Space Manager, 8488
Spam, 130
Speech analysis, 196
Speech system, context-aware, 137
Spoon, 77
SPOT, 18
Starbucks, 34
Sunglasses, 81

T

Tablecloth, 76

Tables, 76-77, 79

TEA project, 78

Telme, 132

Things That Think Consortium, 79

Thinking, context-aware system
functionality, 20-24

Time measurements, for ambient services,
46-49

TinyOS, 149

Toothbrush/mirror combination, 77

U

Ubiquitous computing, 2, see also Context-
aware pervasive computing

agent platforms for, 108-109

Ubiquitous Message Delivery (UMD), 128

Ubisense, 17, 22

Ultrasonic positioning system, 22

Uncertainty in context information, 24-25

UPnP, 136

Usability issues, 208

\%

Vehicle detection application, 200-201
Virtual bus tour, 182
Virtual communities, place-based, See
Place-based electronic (PBE)
communities
Virtual objects
aware object associations, 81
mutual awareness, 177-179
Virtual Reality Markup Language (VRML),
186
Virtual worlds, See Mirror world models
Voice-over-IP (VoIP) services, 44
VoIP spam, 130

%%

Warehouse inventory management, 17
WAY, 108
Wearable computers, 3, 79, 132
Web services, 31-32, See also Mobile
services
agent platforms for ubiquitous
computing, 108-109
ambient services architecture, 44—49

220 ®m Context-Aware Pervasive Systems

context-aware mobile software agent place-based electronic communities,
interactions, 105, 109-125, See 49-50
also Context-Aware Lightweight short-range technology, See Short-range
Mobile BDI Agents wireless networking technology
context collection, 54 Wireless personal area networks (WPANs),

34
Wireless sensor networks (WSN), 143-144,
See also Context-aware sensor

location-based shopping support, 39

scenarios for mobile agent interactions,

106-108 networks; Sensors
Wheelchairs, 76 power management, See Power use
Windows Media Player applications, 53, management, context-aware

55-60 sensors
Wireless Application Protocol (WAP), 32, simulation integration, 175

89
Wireless local area networks (WLANSs), 16, X

See also specific applications,

technologies XACML, 168

ambient services, 34-35 XML, See eXtensible Markup Language

Electrical Engineering / Computer Engineering / Networking

Context-Aware
Pervasive Systems

Architectures for a New Breed of Applications

SENG LOKE

The concept of aware systems is among the most exciting trends in computing today,
fueled by recent developments in pervasive computing, including new computers worn
by users, embedded devices, smart appliances, sensors, and varieties of wireless
networking technology. Context-Aware Pervasive Systems: Architectures for a New
Breed of Applications introduces a diverse set of application areas and provides
blueprints for building context-aware behavior into applications.

Reviewing the anatomy of context-aware pervasive applications, this resource covers
abstract architecture. It examines mobile services, appliances, smart devices, software
agents, electronic communication, sensor networks, security frameworks, and intelligent
software agents. The book also discusses the use of context awareness for communication
among people, devices, and software agents and how sensors can be aware of their own
situations. Exploring the use of physical context for controlling and enhancing security
in pervasive computing environments, this guide addresses mirror worlds and elucidates
design perspectives based on a declarative programming language paradigm.

This carefully paced volume presents a timely and relevant introduction to the emergence
of context-aware systems and brings together architectures and principles of context-
aware computing in one source.

Features

« Distills general design principles and a generic architecture for context-aware
applications

« Assembles diverse applications, bringing out the commonalities and principles
that span application areas, as well as application-specific differences

» Discusses design and construction ideas for practical insight into these systems

» Presents material readily usable for engineers, researchers, and practitioners

* Provides an extensive list of references for further research

% AU7255
Auerbach Publications
f/N\ Taylor s Francis Group ISBN 0-8493-7255-0
an informa business 70000
www.taylorandfrancisgroup.com

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487

270 Madison Avenue
New York, NY 10016 9i7808491372551

